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Nesting and Mixed Effects: Part I



 So far:
 Fixed effects

 Random effects

 Both in the factorial context

 Now:
 Nested factor structure

 Mixed models: a combination of fixed and random effects.

Where do we stand?



 With crossed factors 𝐴 and 𝐵 we see (by definition) all 

possible combinations of factor levels, i.e. we can set 

up a data table of the following form

 This means: We see every level of factor 𝐴 at every 

level of factor 𝐵 (and vice versa).

 Factor level 1 of factor 𝐴 has the same meaning across 

all levels of factor 𝐵.

Remember: Crossed Factors

Factor 𝐴 / Factor 𝐵 1 2 3

1 𝑥 𝑥 𝑥

2 𝑥 𝑥 𝑥

3 𝑥 𝑥 𝑥

4 𝑥 𝑥 𝑥

Think of 𝑛
observations 

here



 Want to analyze student performance. 

 Data from different classes from different schools (on a 

student level).

 What is the (grade) variability
 between different schools?

 between classes within the same school?

 between students within the same class?

 This looks like a new design, as classes are clearly not

crossed with schools, similarly for students.

 This leads us to a new definition…
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Example: Student Performance (Roth, 2013)



 We call factor 𝐵 nested in factor 𝐴 if we have different

levels of 𝐵 within each level of 𝐴. 

 E.g., think of 𝐴 = school, 𝐵 = class.

 We also write: 𝐵(𝐴).

 Data is not necessarily presented in this form…
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New: Nested Factor Structure

Factor A / Factor B 1 2 3 4 5 6 7 8 9 10 11 12

1 𝑥 𝑥

2 𝑥 𝑥

3 𝑥 𝑥

4 𝑥 𝑥

5 𝑥 𝑥

6 𝑥 𝑥



 Presented data:

 Underlying data structure: 

Hence, class is nested in school because class 1 in 

school 1 has nothing do with class 1 in school 2 etc.
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Nested Factors: Example (Roth, 2013)

Class 1 Class 2

School 𝟏 𝑥 𝑥

School 𝟐 𝑥 𝑥

School 𝟑 𝑥 𝑥

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

School 𝟏 𝑥 𝑥

School 𝟐 𝑥 𝑥

School 𝟑 𝑥 𝑥



 Just because the classes are labelled 1 and 2 doesn’t 

mean that it is a crossed design!

 Hence: Always ask yourself whether the factor level “1” 

really corresponds to the same “object” across all 

levels of the other factor. 

 Typically we use parentheses in the index to indicate 

nesting, i.e. the model is written as

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 𝑖 + 𝜖𝑘(𝑖𝑗)

 Here, we also wrote the errors in “nested notation”. 

Errors are always nested, we’ve just ignored this so far.
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Nested Factors

school
class within 

school
error



 Typically we use a nested structure due to practical / 

logistical constraints.

 For example:
 Patients are nested in hospitals as we don’t want to send patients 

to all clinics across the countries.

 Samples are nested in batches (in quality control).

 …
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Why Use Nesting?



 We call a design fully nested if every factor is nested in 

its predecessor.

 Genomics example in Oehlert (2000):
 Consider three subspecies.

 Randomly choose five males from each subspecies (= 15 males).

 Each male is mated with four different females of the same 

subspecies (= 60 females).

 Observe 3 offsprings per mating (= 180 offsprings).

 Make two measurements per offspring (= 360 measurements)

 Picture:
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Example: Fully Nested Design

etc.

subspecies

males (within species)



 We use the model

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 𝑖 + 𝛾𝑘 𝑖𝑗 + 𝛿𝑙 𝑖𝑗𝑘 + 𝜀𝑚(𝑖𝑗𝑘𝑙)

 To calculate the corresponding sums of squares, we use

the decomposition

𝑦𝑖𝑗𝑘𝑙𝑚 −  𝑦….. =  𝑦 𝑖…. −  𝑦….. +  𝑦𝑖𝑗… −  𝑦𝑖.… +

 𝑦𝑖𝑗𝑘.. −  𝑦𝑖𝑗... +  𝑦
𝑖𝑗𝑘𝑙.

−  𝑦𝑖𝑗𝑘.. +

𝑦𝑖𝑗𝑘𝑙𝑚 −  𝑦𝑖𝑗𝑘𝑙.

take the square and the sum over all indices.
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Example: Fully Nested Design

species

male 

within 

species

female 

within 

male

offspring 

within 

female
error

deviation of the species mean deviation of the animal 

mean within species

deviation of the 

female mean within 

male animal
deviation of the 

offspring mean within 

female animal
residual

weight
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ANOVA Table for Fully Nested Design

 This leads us to the decomposition

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 𝐴 + 𝑆𝑆𝐶 𝐴𝐵 + 𝑆𝑆𝐷 𝐴𝐵𝐶 + 𝑆𝑆𝐸

 Assuming we have only random effects and a balanced

design we have the following ANOVA table

 With this information we can again construct tests and 

estimators for the different variance components.

Source df E[MS]

𝐴 𝑎 − 1 𝜎2 + 𝑛𝜎𝛿
2 + 𝑛𝑑𝜎𝛾

2 + 𝑛𝑐𝑑𝜎𝛽
2 + 𝑛𝑏𝑐𝑑𝜎𝛼

2

𝐵(𝐴) 𝑎(𝑏 − 1) 𝜎2 + 𝑛𝜎𝛿
2 + 𝑛𝑑𝜎𝛾

2 + 𝑛𝑐𝑑𝜎𝛽
2

𝐶(𝐴𝐵) 𝑎𝑏(𝑐 − 1) 𝜎2 + 𝑛𝜎𝛿
2 + 𝑛𝑑𝜎𝛾

2

𝐷(𝐴𝐵𝐶) 𝑎𝑏𝑐(𝑑 − 1) 𝜎2 + 𝑛𝜎𝛿
2

Error 𝑎𝑏𝑐𝑑(𝑛 − 1) 𝜎2



 𝐹-Tests are constructed by taking the ratio of 

“neighboring” mean squares as they just differ by the 

variance component of interest.

 This means that we always use the mean square of the 

successor in the hierarchy tree as denominator.

 E.g., use 𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝐵 𝐴
to test 𝐻0: 𝜎𝛼

2 = 0 vs. 𝐻𝐴: 𝜎𝛼
2 > 0.
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ANOVA for Fully Nested Designs

“between 𝐴”

“within 𝐴”



 Dataset from the lme4 package.

 Chemical paste product contained in casks.

 10 deliveries (batches) were randomly selected.

 From each delivery, 3 casks were randomly selected.

 Per cask: make two measurements.
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Example: Pastes Strength
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Example: Pastes Strength - Visualization
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 Model:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 𝑖 + 𝜖𝑘(𝑖𝑗)

 Dataset in R:

 Be careful! Why?
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Example: Pastes Strength

effect of

batch

effect of cask 

within batch

error 

term

𝑁 0, 𝜎𝛼
2 𝑁 0, 𝜎𝛽

2 𝑁 0, 𝜎2

strength
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Analysis Using aov

 Using the aov command

 Output can be used to manually calculate the different 

variance components by solving the equations with the 

corresponding expected mean squares:

 𝜎2 = 0.678

 𝜎𝛼
2 =

27.489 − 17.545

2 ⋅ 3
= 1.66

 𝜎𝛽
2 =

17.545 − 0.678

2
= 8.43

E[MS]

batch 𝜎2 + 2 ⋅ 𝜎𝛽
2 + 2 ⋅ 3 ⋅ 𝜎𝛼

2

cask(batch) 𝜎2 + 2 ⋅ 𝜎𝛽
2

Error 𝜎2



 Similarly, tests have to be calculated manually.

 E.g., for the batch variance component:

 𝐹 =
27.489

17.545
= 1.567

 Use 𝐹9,20-distribution to calculate 𝑝-value:

 Hence, cannot reject 𝐻0: 𝜎𝛼
2 = 0.

 Note that default output is wrong here as the model was 

interpreted as a fixed effects model (using the wrong 

denominator mean square)!
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Analysis Using aov
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Analysis Using lmer

 bla

notation for nesting

structure

 𝜎𝛽

 𝜎

 𝜎𝛼
Check if model was 

interpreted correctly

 𝜇



 Get confidence intervals using

 (Conservative) tests of the variance component can here 

be obtained with

18

Analysis Using lmer



 The fully nested design is only a (very) special case.

 A design can of course have both crossed and nested

factors.

 In addition, a model can contain both random and fixed

effects. If this is the case, we call it a mixed effects 

model.

 Let’s have a look at an example.
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General Situation



Cheese Tasting (Oehlert, 2000, Example 12.2)

 How do urban and rural consumers rate 

cheddar cheese for bitterness?

 Four 50-pound blocks of different cheese types are 

available.

 We use food science students as our raters
 Choose 10 students at random with rural background.

 Choose 10 students at random with urban background.

 Each rater will taste 8 bites of cheese (presented in 

random order).

 The 8 bites consist of two from each cheese type. Hence, 

every rater gets every cheese type twice.
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 What factors do we have here?

 𝐴: background, levels = {“rural”, “urban”}

 𝐵: rater, levels = {1, …,10} (or 20); nested in background

 𝐶: cheese type, levels = {1, 2, 3, 4}

 Relationship: 𝐴 × 𝐵 𝐴 × 𝐶 (both 𝐴 and 𝐶 are crossed with 𝐵)
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Cheese Tasting (Oehlert, 2000, Example 12.2)

backgroundrural urban

1 10 1 10 rater

cheese type1 2 43



 A model to analyze this data could be

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗(𝑖) + 𝛾𝑘 + 𝛼𝛾 𝑖𝑘 + 𝛽𝛾 𝑗𝑘(𝑖) + 𝜖𝑙 𝑖𝑗𝑘

where 
 𝛼𝑖 are the fixed effects of background

 𝛽𝑗(𝑖) are the random effects of rater (within background)

 𝛾𝑘 are the fixed effects of cheese type. 

 𝛼𝛾 𝑖𝑘 is the (fixed) interaction effect between background and 

cheese type.

 𝛽𝛾 𝑗𝑘(𝑖) is the (random) interaction between rater and cheese 

type.

 The interaction between a fixed effect and a random 

effect is random (as it includes a random component).
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Cheese Tasting (Oehlert, 2000, Example 12.2)



 Interpretation of parameters:
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Cheese Tasting (Oehlert, 2000, Example 12.2)

Term Interpretation

𝛼𝑖 Main effect of background.

𝛽𝑗(𝑖)
Random effect of rater: allows for an individual “general 

cheese liking” level of a rater.

𝛾𝑘 Main effect of cheese type.

𝛼𝛾 𝑖𝑘
Fixed interaction effect between background and cheese 

type.

𝛽𝛾 𝑗𝑘(𝑖)

Random interaction between rater and cheese type: allows 

for an individual deviation from the population average 

“cheese type” effect.
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Data Generating Mechanisms

 Assume only two factors: 

 𝐴 fixed (with 𝑎 levels) and 

 𝐵 random (with 𝑏 levels)

 Think of hypothetical data-table

with lot’s of columns.

 To get the observed data-table we randomly pick out 𝑏
columns.

A/B 1 2 3 4 5 6 …

1

2

…

𝑎



 That means: if we repeat the experiment and select the 

same column twice we get the very same column (and of 

course the same column total).

 This implicitly means: the interaction effects are 

“attached” to the column. This is called the restricted 

model.

 In the restricted model we assume that the interaction 

effects add to zero when summed across a fixed effect 

(they are random but restricted!)

 The alternative is the unrestricted model which treats 

interaction effects independently from the main effects.
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Data Generating Mechanisms



 In the tasting experiment: Would prefer restricted model 

because interaction is “attached” to raters.

 Reason: the rater will not change his special taste

(remember meaning of parameters).
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Data Generating Mechanisms



 Unrestricted model:

Random effects (including interactions!) have the assumptions:
 independent

 normally distributed with mean 0

 effects corresponding to the same term have a common variance: 

𝜎𝛼
2, 𝜎𝛽

2, 𝜎𝛼𝛽
2 etc.

Fixed effects:
 have the usual sum-to-zero constraint (across any subscript).

 Restricted model:
 As above, with the exception that interactions between random and fixed 

factors (which are random!) follow the sum-to-zero constraint over any 

subscript corresponding to a fixed factor.

 This induces a negative correlation within these random effects, hence 

they are not independent anymore.
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Data Generating Mechanisms: More Technical


