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Random Effects



 Up to now: treatment effects were fixed, unknown 

parameters that we were trying to estimate.

 Such models are also called fixed effects models.

 Now: Consider the situation where treatments are 

random samples from a large population of potential 

treatments.

 Example: Effect of machine operators that were randomly 

selected from a large pool of operators. 

 In this setup, treatment effects are random variables and 

therefore called random effects. The corresponding 

model will be a random effects model.

New Philosophy…
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 Why would we be interested in a random 

effects situation?

 It is a useful way of thinking if we want to make a 

statement (conclusion) about the population of all 

treatments.

 In the operator example we shift the focus away from 

the individual operators (treatments) to the population 

of all operators (treatments).

 Typically, we are interested in the variance of the

treatment population.

 E.g., what is the variation from operator to operator?

2

New Philosophy…
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Examples of Random Effects

Randomly select… …from…

clinics …all clinics in a country.

school classes …all school classes in a region.

investigators …a large pool of investigators.

series in quality control …all series in a certain time period.

… …



 Company with 50 machines that produce cardboard 

cartons.

 Ideally, strength of the cartons shouldn’t vary too much. 

 Therefore, we want to have an idea about
 “machine-to-machine” variation

 “sample-to-sample” variation on the same machine.

 Perform experiment: 
 Choose 10 machines at random (out of the 50)

 Produce 40 cartons on each machine

 Test resulting cartons for strength ( response)
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Carton Experiment One (Oehlert, 2000)



 Model so far:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗, 

where 𝛼𝑖 is the (fixed) effect of machine 𝑖 and 𝜀𝑖𝑗 are the 

errors with the usual assumptions.

 However, this model does not reflect the sampling 

mechanism from above.

 If we repeat the experiment, the selected machines 

change and therefore also the meaning of the 

parameters: they typically correspond to a different 

machine!

 Moreover, we want to learn something about the 

population of all machines.
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Carton Experiment One (Oehlert, 2000)



 New: Random effects model:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗, 

with
 𝛼𝑖 i. i. d. ∼ 𝑁 0, 𝜎𝛼

2

 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎2

 This looks very similar to the old model, however the 𝛼𝑖’s 

are now random variables!

 That small change will have a large impact on the 

properties of the model and on our way to analyze such 

kind of data.
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Carton Experiment One (Oehlert, 2000)

Parameter

Random variable

effect of

machine



 Properties of random effects model:

 Var 𝑌𝑖𝑗 = 𝜎𝛼
2 + 𝜎2

 Cor 𝑌𝑖𝑗 , 𝑌𝑘𝑙 =  
0 𝑖 ≠ 𝑘

𝜎𝛼
2/(𝜎𝛼

2 + 𝜎2) 𝑖 = 𝑘, 𝑗 ≠ 𝑙
1 𝑖 = 𝑘, 𝑗 = 𝑙

Reason: Observations from the same machine “share” the same 

random value 𝛼𝑖 and are therefore correlated.

 Conceptually, we could also put all the correlation structure into the 

error term and forget about the 𝛼𝑖 ’s, i.e.

𝑌𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗

where 𝜖𝑖𝑗 has the appropriate correlation structure from above. 

Sometimes this interpretation is a useful way of thinking.
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Carton Experiment One (Oehlert, 2000)

variance components

different machines

same machine

intraclass correlation



8

Random vs. Fixed: Overview

 Comparison between random and fixed effects models

 A note on the sampling mechanism:
 Fixed: Draw new random errors only, everything else is kept constant.

 Random: Draw new “treatment effects” and new random errors (!)

Term Fixed effects model Random effects model

𝛼𝑖
fixed, unknown 

constant
𝛼𝑖 i. i. d. ∼ 𝑁(0, 𝜎𝛼

2)

Side constraint on 𝛼𝑖 needed not needed

𝐸[𝑌𝑖𝑗] 𝜇 + 𝛼𝑖 𝜇, but 𝐸 𝑌𝑖𝑗 𝛼𝑖 = 𝜇 + 𝛼𝑖

Var(𝑌𝑖𝑗) 𝜎2 𝜎𝛼
2 + 𝜎2

Corr(𝑌𝑖𝑗 , 𝑌𝑘𝑙) = 0 (𝑗 ≠ 𝑙) =  
0 𝑖 ≠ 𝑘

𝜎𝛼
2/(𝜎𝛼

2 + 𝜎2)
1

𝑖 = 𝑘, 𝑗 ≠ 𝑙
𝑖 = 𝑘, 𝑗 = 𝑙



Fixed case: 3 different fixed treatment levels 𝛼𝑖.

We (repeatedly) sample 2 observations per treatment level:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗
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Illustration of Correlation Structure

𝛼1 = −4.5

𝛼2 = 1

𝛼3 = 3.5

Think of 3 specific

machines

Think of 2 carton 

samples
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Random case: 

Whenever we draw 2 observations 𝑌𝑖1 and 𝑌𝑖2 we first have 

to draw a new (common) random treatment effect 𝛼𝑖.
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Illustration of Correlation Structure

Think of a 

random

machine.

Think of 2 carton 

samples



 Let us extend the previous experiment.

 Assume that machine operators also influence the 

production process.

 Choose 10 operators at random. 

 Each operator will produce 4 cartons on each machine 

(hence, operator and machine are crossed factors).

 All assignments are completely randomized.
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Carton Experiment Two (Oehlert, 2000)



 Model:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜖𝑖𝑗𝑘,

with

 𝛼𝑖 , 𝛽𝑗 , 𝛼𝛽 𝑖𝑗 , 𝜖𝑖𝑗𝑘 independent and normally distributed.

 Var 𝑌𝑖𝑗𝑘 = 𝜎𝛼
2 + 𝜎𝛽

2 + 𝜎𝛼𝛽
2 + 𝜎2 (different variance components).

 Measurements from the same machine and / or operator are again 

correlated. 

 The more random effects two observations share, the larger the 

correlation. It is given by

sum of shared variance components

sum of all variance components

 E.g., correlation between two (different) observations from the 

same operator on different machines is given by
𝜎𝛽
2

𝜎𝛼
2 + 𝜎𝛽

2 + 𝜎𝛼𝛽
2 + 𝜎2
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Carton Experiment Two (Oehlert, 2000)

𝑁 0, 𝜎𝛼
2 𝑁 0, 𝜎𝛽

2 𝑁 0, 𝜎𝛼𝛽
2

𝑁 0, 𝜎2

main effect

machine

main effect

operator
interaction

machine×operator



 Hierarchy is typically less problematic in random effects 

models.

1) What part of the variation is due to general machine-to-machine 

variation?  𝜎𝛼
2

2) What part of the variation is due to operator-specific machine 

variation?  𝜎𝛼𝛽
2

Could ask question (1) even if interaction is present (question (2)).

 Extensions to more than two factors straightforward.
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Carton Experiment Two (Oehlert, 2000)



 Sums of squares, degrees of freedom and mean squares 

are being calculated as if the model would be a fixed 

effects model (!)

 One-way ANOVA (𝐴 random, 𝑛 observations per cell)

 Two-way ANOVA (𝐴, 𝐵, 𝐴𝐵 random, 𝑛 observations per cell)
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ANOVA for Random Effects Models (balanced designs)

Source df SS MS E[MS]

𝐴 𝑔 − 1 … … 𝜎2 + 𝑛𝜎𝛼
2

Error 𝑁 − 𝑔 … … 𝜎2

Source df SS MS E[MS]

𝐴 𝑎 − 1 … … 𝜎2 + 𝑏 ⋅ 𝑛 ⋅ 𝜎𝛼
2 + 𝑛 ⋅ 𝜎𝛼𝛽

2

𝐵 𝑏 − 1 … … 𝜎2 + 𝑎 ⋅ 𝑛 ⋅ 𝜎𝛽
2 + 𝑛 ⋅ 𝜎𝛼𝛽

2

𝐴𝐵 (𝑎 − 1)(𝑏 − 1) … … 𝜎2 + 𝑛 ⋅ 𝜎𝛼𝛽
2

Error 𝑎𝑏(𝑛 − 1) … … 𝜎2



 We are now formulating our null-hypothesis with respect 

to the parameter 𝜎𝛼
2.

 To test 𝐻0: 𝜎𝛼
2 = 0 vs. 𝐻𝐴: 𝜎𝛼

2 > 0 we use the ratio

𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝐸
∼ 𝐹𝑔−1,𝑁−𝑔 under 𝐻0

Exactly as in the fixed effect case!

 Why? Under the old and the new 𝐻0 both models are the 

same!
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One-Way ANOVA with Random Effects



 To test 𝐻0: 𝜎𝛼
2 = 0 we need to find a term which has 

identical 𝐸[𝑀𝑆] under 𝐻0.

 Use 𝑀𝑆𝐴𝐵, i.e. 𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
∼ 𝐹𝑎−1, 𝑎−1 𝑏−1 under 𝐻0.

 Similarly for the test 𝐻0: 𝜎𝛽
2 = 0.

 The interaction will be tested against the error, i.e. use

𝐹 =
𝑀𝑆𝐴𝐵
𝑀𝑆𝐸

∼ 𝐹 𝑎−1 𝑏−1 , 𝑎𝑏 𝑛−1

under 𝐻0: 𝜎𝛼𝛽
2 = 0.

 In the fixed effect case we would test all effects against the 

error term (i.e., use 𝑀𝑆𝐸 instead of 𝑀𝑆𝐴𝐵 to build 𝐹-ratio)!
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Two-Way ANOVA with Random Effects



 Reason: ANOVA table for fixed effects: 

 E.g, 𝑆𝑆𝐴 (𝑀𝑆𝐴) is being calculated based on column-wise 

means.

 In the fixed effects model, the expected mean squares 

do not “contain” any other component.
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Two-Way ANOVA with Random Effects

Source df E[MS]

𝐴 𝑎 − 1 𝜎2 + 𝑏 ⋅ 𝑛 ⋅ 𝑄 𝛼

𝐵 𝑏 − 1 𝜎2 + 𝑎 ⋅ 𝑛 ⋅ 𝑄(𝛽)

𝐴𝐵 (𝑎 − 1)(𝑏 − 1) 𝜎2 + 𝑛 ⋅ 𝑄(𝛼𝛽)

Error 𝑎𝑏(𝑛 − 1) 𝜎2

Didn’t look at this 

column when analyzing 

factorials

Shorthand 

notation for a 

term depending 

on 𝛼𝑖
′𝑠



 In a random effects model, a column-wise mean is 

“contaminated” with the average of the corresponding 

interaction terms.

 In a fixed effects model, the sum (or mean) of these 

interaction terms is zero by definition.

 In the random effects model, this is only true for the 

expected value, but not for an individual realization!

 Hence, we need to check whether the variation from 

“column to column” is larger than term based on error and

interaction term. 
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Two-Way ANOVA with Random Effects



 We do not only want to test the variance components, we  

also want to have estimates of them.

 I.e., we want to determine  𝜎𝛼
2,  𝜎𝛽

2,  𝜎𝛼𝛽
2 ,  𝜎2 etc.

 Easiest approach: ANOVA estimates of variance 

components.

 Use columns “MS” and “E[MS]” in ANOVA table, solve the 

corresponding equations from bottom to top.

 Example: One-way ANOVA

  𝜎2 = 𝑀𝑆𝐸

  𝜎𝛼
2 =

𝑀𝑆𝐴−𝑀𝑆𝐸

𝑛
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Point Estimates of Variance Components



 Advantage: Can be done using standard ANOVA 

functions (i.e., no special software needed).

 Disadvantages: 
 Estimates can be negative (in previous example if 𝑀𝑆𝐴 < 𝑀𝑆𝐸). Set 

them to zero in such cases.

 Not always as easy as here.

 This is like a method of moments estimator.

 More modern and much more flexible: restricted 

maximum-likelihood estimator (REML). 
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Point Estimates of Variance Components



 Think of a modification of maximum likelihood estimation 

that removes bias in estimation of variance components.

 Theory complicated (still ongoing research).

 Software implementation in R-package lme4 (or 

lmerTest)

 lme4 and lmerTest allow to fit so called mixed models 

(containing both random and fixed effects, more details 

later).

 Basically, lmerTest is the same as lme4 with some 

more features.
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Point Estimates of Variance Components: REML



 General rule: Variances are “difficult” to estimate in the 

sense that you’ll need a lot of observations to have some 

reasonable accuracy.

 Only approximate confidence intervals are available.

 Use confint in R.
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Confidence Intervals for Variance Components



 If we do a study with random effects it is good if we have 

a lot of levels of a random effect in order to estimate a 

variance component with high precision.

 Or in other words: Who wants to estimate a variance with 

only very few observations?
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Some Thoughts About Random Effects



 Genetics study with beef animals.

 Inheritance study of birth weights.

 Five sires, each mated to a different group of dams.

 Birth weight of eight male calves in each of the five sire 

groups. 

 Analyze data using a random effect for sire.
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Example: Genetics Study (Kuehl, 2000, Exercise 5.1)

Sire 1 2 3 4 5 6 7 8

1 61 100 56 113 99 103 75 62

2 75 102 95 103 98 115 98 94

3 58 60 60 57 57 59 54 100

4 57 56 67 59 58 12 101 101

5 59 46 120 115 115 93 105 75
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Example: Genetics Study (Kuehl, 2000, Chapter 5, Ex. 1)

1 2 3 4 5

6
0

8
0

1
0

0
1

2
0

w
e

ig
h

t



 Model: 𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗 , 𝛼𝑖 i. i. d. ∼ 𝑁 0, 𝜎𝛼
2 , 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎𝛼

2

 We reject 𝐻0: 𝜎𝛼
2 = 0.

 We estimate 𝜎𝛼
2 by  𝜎𝛼

2 =
1397.8−463.8

8
= 116.75.

 The variance of 𝑌𝑖𝑗 is estimated as 

 𝜎2 +  𝜎𝛼
2 = 116.75 + 463.8 = 580.55.

 Variation due to sire accounts for about 20% of total 

variance (= intraclass correlation).
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Example: Genetics Study

Old school 

estimation 

technique.



 We fitted the model as if it was a fixed effects model and 

then “adjusted” the output for random effects specific 

questions.

 Now we want to use the more modern approach (based 

on REML estimation technique).
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Example: Genetics Study



 In R using the function lmer in Package lme4.
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Example: Genetics Study

 𝜎𝛼

 𝜎

 𝜇

Check if model was 

interpreted correctly

Meaning: a random effect 

per sire



 Manufacturer was developing a new spectrophotometer 

for medical labs.

 Development at pilot stage. Evaluate machine 

performance from assembly line production.

 Critical: Consistency of measurement from day to day 

among different machines.

 Design: 
 4 (randomly selected) machines

 4 (randomly selected) days

 Per day: 8 serum samples (from the same stock reagent), 

randomly assign 2 samples to each of the 4 machines.
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Example: Evaluating Machine Performance (Kuehl, 2000, Ex. 7.1)



 Measure triglyceride levels (mg/dl) of the samples.

 Note: Always the same technician prepared the serum 

samples and operated the machines throughout the 

experiment.

30

Example: Evaluating Machine Performance



 Fit random effects model with interaction with usual assumpt.

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜖𝑖𝑗𝑘

 Classical approach:

 “Classical” approach to estimate variance components.

 Results: 
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Example: Evaluating Machine Performance

𝑁 0, 𝜎𝛼
2

[day]

𝑁 0, 𝜎𝛽
2

[machine]

𝑁 0, 𝜎𝛼𝛽
2

[day × machine]

𝑁 0, 𝜎2

[error]

 𝜎2 = 17.9

 𝜎𝛼𝛽
2 =

87.3 − 17.9

2
= 34.7

 𝜎𝛼
2 =

444.8 − 87.3

8
= 44.7

 𝜎𝛽
2 =

549.1 − 87.3

8
= 57.7



Testing the variance components: “by hand”

 Interaction: 𝐻0: 𝜎𝛼𝛽
2 = 0.

M𝑆𝐴𝐵

𝑀𝑆𝐸
=

87.3

17.9
= 4.9, 𝐹9,16-distribution

 Main effect day: 𝐻0: 𝜎𝛼
2 = 0.

M𝑆𝐴

𝑀𝑆𝐴𝐵
=

444.8

87.3
= 5.1, 𝐹3,9-distribution

 Main effect machine: 𝐻0: 𝜎𝛽
2 = 0.

M𝑆𝐵

𝑀𝑆𝐴𝐵
=

549.1

87.3
= 6.3, 𝐹3,9-distribution
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Example: Evaluating Machine Performance

reject

reject

reject
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Example: Evaluating Machine Performance

 Using the function lmer in package lme4

 𝜎𝛼𝛽
 𝜎𝛽

 𝜎

 𝜎𝛼

Check if model was 

interpreted correctly

 𝜇

Meaning: a random effect per 

day, per machine and per 

day x machine combination



 Total variance is 17.9 + 34.7 + 44.7 + 57.7 = 155.

 Individual contributions

 Manufacturer now has to decide if some sources of 

variation are too large.
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Example: Evaluating Machine Performance

Source Percentage Interpretation

Day
44.7

155
= 29%

Day to day operational differences (e.g., due to daily 

calibration)

Machine
57.7

155
= 37% Variability in machine performance

Interaction
34.7

155
= 22%

Variability due to inconsistent behavior of machines 

over days (calibration inconsistency within the same 

day?)

Error
17.9

155
= 12% Variation in serum samples


