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New Philosophy...

Up to now: treatment effects were fixed, unknown
parameters that we were trying to estimate.

Such models are also called fixed effects models.

Now: Consider the situation where treatments are
random samples from a large population of potential
treatments.

Example: Effect of machine operators that were randomly
selected from a large pool of operators.

In this setup, treatment effects are random variables and
therefore called random effects. The corresponding
model will be a random effects model.



New Philosophy...

Why would we be interested in a random
effects situation?

It is a useful way of thinking if we want to make a
statement (conclusion) about the population of all
treatments.

In the operator example we shift the focus away from
the individual operators (treatments) to the population
of all operators (treatments).

Typically, we are interested in the variance of the
treatment population.

E.g., what is the variation from operator to operator?



Examples of Random Effects

Randomly select...

clinics ...all clinics in a country.
school classes ...all school classes in a region.
investigators ...a large pool of investigators.

series in quality control ...all series in a certain time period.



Carton Experiment One (Oehlert, 2000)

Company with 50 machines that produce cardboard
cartons.

|deally, strength of the cartons shouldn’t vary too much.

Therefore, we want to have an idea about
= “machine-to-machine” variation
= “sample-to-sample” variation on the same machine.

Perform experiment:

= Choose 10 machines at random (out of the 50)
= Produce 40 cartons on each machine

= Test resulting cartons for strength (= response)



Carton Experiment One (Oehlert, 2000)

= Model so far:
Vij=puta t+e;,
where a; Is the (fixed) effect of machine i and ¢;; are the
errors with the usual assumptions.

= However, this model does not reflect the sampling
mechanism from above.

= |f we repeat the experiment, the selected machines
change and therefore also the meaning of the

parameters: they typically correspond to a different
machine!

= Moreover, we want to learn something about the
population of all machines.



Carton Experiment One (Oehlert, 2000)

= New: Random effects model:

Parameter

Yij =pn+a; + €,

\ Random variable

Wlth effect_ of
= g iid.~ N(0,02) machine
" € i.i.d.~ N(O,O'Z)

= This looks very similar to the old model, however the «;’s
are now random variables!

= That small change will have a large impact on the

properties of the model and on our way to analyze such
kind of data.



Carton Experiment One (Oehlert, 2000)

= Properties of random effects model:
. '\ = 52 + 52
Var(yu) = U& variance components

/

0 i =k different machines
= Cor(Y,Yy) = <05/(06 +0%) i=kj=*l

\/ 1 i=kj=1

intraclass correlation

} same machine

Reason: Observations from the same machine “share” the same
random value a; and are therefore correlated.

= Conceptually, we could also put all the correlation structure into the
error term and forget about the a;’s, i.e.

Yij =pn+€;
where €;; has the appropriate correlation structure from above.
Sometimes this interpretation is a useful way of thinking.



Random vs. Fixed: Overview

= Comparison between random and fixed effects models

Fixed effects model Random effects model

fixed, unknown

a; S—— a;i.i.d. ~ N(0,02)
Side constraint on «; needed not needed
EYy] Hta wbUt E[ Y | a;] = p+ a
Var(Y;;) o 02+ o*
0 i+ k
Corr(Yyj, Vi) =00 #1) = {Go%/("oi +0%) i ~ Ilzj f ;

= A note on the sampling mechanism:
= Fixed: Draw new random errors only, everything else is kept constant.
= Random: Draw new “treatment effects” and new random errors (!)



Think of 3 specific

lllustration of Correlation Structure machines

Fixed case: 3 different fixed treatment levels ai/
We (repeatedly) sample 2 observations per treatment level:

\ Think of 2 carton

Yl] = U + a; + Eij samples

az = 3.5

-10 -2 0 o] 10



lllustration of Correlation Structure

Think of 2 carton

Random case: Savp'es

Whenever we draw 2 observations Y;; and Y;, we first have
to draw a new (common) random treatment effect «;. —

Think of a
random
machine.

Yi2
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Carton Experiment Two (Oehlert, 2000)

Let us extend the previous experiment.

Assume that machine operators also influence the
production process.

Choose 10 operators at random.

Each operator will produce 4 cartons on each machine
(hence, operator and machine are crossed factors).

All assignments are completely randomized.
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Carton Experiment Two (Oehlert, 2000)

Model: N(0,05) N(0,95) N(0,0z4) N(0,02)

/ 7

Yijk = u ‘F/Uli T ,ﬁj + (aﬁ%ij T €ijks

W|th main effect main effect interaction
machine operator machinexoperator

= a;, B, (aB);j, €;jx independent and normally distributed.

* Var(Yyjx) = 04 + 0§ + 04 + o2 (different variance components).

= Measurements from the same machine and / or operator are again
correlated.

= The more random effects two observations share, the larger the
correlation. It is given by

sum of shared variance components
sum of all variance components

= E.g., correlation between two (different) observations from the

same operator on different machines is given by
2
o)
3

oG +0f + 055+ 02 ;



Carton Experiment Two (Oehlert, 2000)

= Hierarchy is typically less problematic in random effects

models.

1) What part of the variation is due to general machine-to-machine
variation? = o2

2) What part of the variation is due to operator-specific machine
variation? > oy

Could ask question (1) even if interaction is present (question (2)).

= Extensions to more than two factors straightforward.

13



ANOVA for Random Effects Models (balanced designs)

Sums of squares, degrees of freedom and mean squares
are being calculated as if the model would be a fixed
effects model (!)

One-way ANOVA (A random, n observations per cell)

-
o2 +n0a
Error N-g ... .. a?

Two-way ANOVA (4, B, AB random, n observations per cell)

_

a—1 d?+b-n-0f+n- aaﬁ
B b—-1 c?+a-n- aﬁ +n- aaﬁ @
AB (@a-D(B-1 .. .. 6% +n- 0l @

Error ab(n — 1) o
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One-Way ANOVA with Random Effects

= We are now formulating our null-hypothesis with respect

to the parameter 2.

To test Hy: 02 = 0 vs. Hy: 02 > 0 we use the ratio
MS 4

F=24 F  u
MSEg g—-1,N—g

Exactly as in the fixed effect case!

under H,

Why? Under the old and the new H, both models are the
same!
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Two-Way ANOVA with Random Effects

= To test Hy: 02 = 0 we need to find a term which has
identical E[MS] under H,.

: MS
= Use MSAB, l.e. F = MSAAB ~ Fa—l, (a-1)(b-1) under HO- @
= Similarly for the test Hy: aj = 0. @

= The interaction will be tested against the error, i.e. use

F = MS, ~ Fa-1)(b-1), ab(n—1)

under Hy: o5 = 0.

* |n the fixed effect case we would test all effects against the
error term (i.e., use MSy instead of MS,z to build F-ratio)!
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Didn’t look at this

TWO 'Way A N OVA W | t h Ran d om EffeCtS column when analyzing

factorials
= Reason: ANOVA table for fixed effects: / Shorthand

notation for a
Source

term depending
on a;s

A a—1 d’+b-n-Q(a)
B b—1 g2+a-n-Q(B)
AB (a—1)(b-1) g2 +n-Q(ap)
Error ab(n — 1) a?

= E.g,SS, (MS,) Is being calculated based on column-wise
means.

* |nthe fixed effects model, the expected mean squares
do not “contain” any other component.
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Two-Way ANOVA with Random Effects

= |n arandom effects model, a column-wise mean is
“contaminated” with the average of the corresponding
Interaction terms.

* |n afixed effects model, the sum (or mean) of these
Interaction terms is zero by definition.

= |nthe random effects model, this is only true for the
expected value, but not for an individual realization!

= Hence, we need to check whether the variation from
“column to column” is larger than term based on error and
Interaction term.
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Point Estimates of Variance Components

= We do not only want to test the variance components, we
also want to have estimates of them.

= l.e., we want to determine 65,65, 655,67 etc.

= Easiest approach: ANOVA estimates of variance
components.

= Use columns “MS” and “E[MS]” in ANOVA table, solve the
corresponding equations from bottom to top.

= Example: One-way ANOVA

" 62=MSE

~ (MS4—MSE)
O_C% — A E

n
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Point Estimates of Variance Components

Advantage: Can be done using standard ANOVA
functions (i.e., no special software needed).

Disadvantages:

= Estimates can be negative (in previous example if MS, < MSg). Set
them to zero in such cases.
= Not always as easy as here.

This is like a method of moments estimator.

More modern and much more flexible: restricted
maximume-likelihood estimator (REML).
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Point Estimates of Variance Components: REML

= Think of a modification of maximum likelihood estimation
that removes bias in estimation of variance components.

= Theory complicated (still ongoing research).

= Software implementation in R-package 1me4 (or
lmerTest)

= Imed and 1lmerTest allow to fit so called mixed models

(containing both random and fixed effects, more details
later).

= Basically, ImerTest IS the same as 1me4 with some
more features.
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Confidence Intervals for Variance Components

General rule: Variances are “difficult” to estimate in the
sense that you'll need a lot of observations to have some
reasonable accuracy.

Only approximate confidence intervals are available.

Use confint in R.
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Some Thoughts About Random Effects

= |f we do a study with random effects it is good if we have
a lot of levels of a random effect in order to estimate a
variance component with high precision.

= Or in other words: Who wants to estimate a variance with
only very few observations?
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Example: Genetics Study (Kuehl, 2000, Exercise 5.1)

= Genetics study with beef animals.

= |nheritance study of birth weights.
= Five sires, each mated to a different group of dams.

= Birth weight of eight male calves in each of the five sire
groups.

sie | 1 | 2 | 3 | 4 | 5 o 7| 8
1 61 100 56 113 99 103 75 62

2 75 102 95 103 98 115 98 94
3 58 60 60 57 57 59 54 100
4 57 56 67 59 58 12 101 101
5 59 46 120 115 115 93 105 75

= Analyze data using a random effect for sire.
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Example: Genetics Study (Kuehl, 2000, Chapter 5, Ex. 1)

o
S - . .
° ® °
o | e ° o ®
S e o ®
—
* °
)
e
2
> O _
S ©
® ® ®
°
o 1 @
© 1 e S | *
e
°

25



Example: Genetics Study

Model: Yl] = U+ a;+ €ijr A; i.i.d.~ N(O, 0-(%); €ij i.i.d. ~

> fit <- aov(weight ~ sire, data = animals)
> summary (fit)
Df Sum Sq Mean Sq F value Pr(>F)

sire 4 5591 1397.8 3.014 0.0309
Residuals 35 16233 46i;f”’,//////
We reject Hy: 02 = 0.
: A 1397.8—463.8
We estimate o2 by 62 = - = 116.75.

The variance of Y;; Is estimated as
6%+ 6% = 116.75 + 463.8 = 580.55.

N(0,04)

Old school
estimation
technique.

Variation due to sire accounts for about 20% of total

variance (= intraclass correlation).
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Example: Genetics Study

= We fitted the model as if it was a fixed effects model and

then “adjusted” the output for random effects specific
guestions.

= Now we want to use the more modern approach (based
on REML estimation technigue).
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Example: Genetics Study

* |n R using the function 1mer in Package 1me4.

> fit.Tme <- Tmer(weight ~ 1 | sire, data
-

animals)

> summary (fit.1me)

Linear mixed model fit by REML ['1merMod'f\

Formula: weight ~ 1 | sire
Data: animals

REML criterion at convergence: 358.2
Scaled residuals:

Min 10 Median 3Q Max
-1.9593 -0.7459 -0.1581 0.8143 1.9421

Random effects:

Groups  Name variance Std.Dev. 6
sire (Intercept) 116.7 10.81<— L@
Residual 463.8 21.54<—~] A
Number of obs: 40, groups: o

Fixed effects:

(Intercept) 82.550 5.911 13.96

sire, 5<\\\\\\‘
Estimate std. Error t value

Meaning: a random effect
per sire

Check if model was
interpreted correctly
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Example: Evaluating Machine Performance ..

Manufacturer was developing a new spectrophotometer
for medical labs.

Development at pilot stage. Evaluate machine
performance from assembly line production.

Critical: Consistency of measurement from day to day
among different machines.

Design:
= 4 (randomly selected) machines
= 4 (randomly selected) days

Per day: 8 serum samples (from the same stock reagent),
randomly assign 2 samples to each of the 4 machines.
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Example: Evaluating Machine Performance
= Measure triglyceride levels (mg/dl) of the samples.

= Note: Always the same technician prepared the serum
samples and operated the machines throughout the

experiment.
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Example: Evaluating Machine Performance

= Fit random effects model with interaction with usual assumpit.
Viie =+ a; + B + (aB)i; + €iji
7 \ T~

N(0,02) N(0,05) N(0,055) N(0,52)
[day] [machine] [day x machine] [error]

= Classical approach:

> fit <- aov(y ~ day * machine, data = trigly)
> summary(fit)

Df Sum Sg Mean Sq F value Pr(>F)
day 3 1334.5 444.8 24.86 2.91le-06 ==
machine 3 1647.3 549.1 30.68 7.19e-07 ===
day:machine 9 786.0 87.3 4.88 0.00294 ==
Residuals 16 286.3 17.9

= “Classical” approach to estimate variance components.

= Results: _
52 _ 170 52 444.88 87.3 _ 44,
., 873-179 ., 549.1-873
Oap = > =347 05 = 3 = 57.7 )



Example: Evaluating Machine Performance

Testing the variance components: “by hand”
= Interaction: Hy: 0.5 = 0.

MS 87.3 L
a8 — = 4.9, F, ¢-distribution
MSg 179 '
> pf(87.3 / 17.9, 9, 16, Tower.tail = FALSE) _
[1] 0.002946051 > | reject
= Main effect day: Hy: 02 = 0.
MS 444.8 .
4 = = 5.1, F; o-distribution
MS.g  87.3 '
> pf(444.8 / 87.3, 3, 9, Tower.tail = FALSE) R -
[1] 0.02477665 > | reject
= Main effect machine: Hy: g5 = 0.
MS 549.1 L
E = = 6.3, F3 o-distribution
MS ap 87.3 ’
> pf(549.1 / 87.3, 3, 9, lower.tail = FALSE) :
[1] 0.01370686 > | reject




Example: Evaluating Machine Performance

Using the function 1mer in package 1me4

= fit.Ime =- Imer(y ~ (1

> summary(fit. Tme) L

Linear mixed model it by REML ['TmermMod’]

Formula: v ~ (1 | day) + (1 | machine) + (1 | machine:day)
Data: trigly

| day) + (1 | machine) + (1 | machine:day), data = trigly)
J

REML criterion at convergence: 215

scaled residuals:

Min

Random effects:

Groups Name
machine:day (Intercept)
machine (Intercept)
day (Intercept)
Residual

Number of obs:

Fixed effects:

Estimate std.
(Intercept) 141.184

1q

I

N

i

Median
-1,.842872 -0.35581 0O.03484 0.20899 2.31766

O-a[)’
variance std.Dev.
34.72 5. 897 R
57.72 7.597 Oq

44,
17.
32, groups:

3Q

09
ag
machine:

6.
4.

Max

—

Meaning: a random effect per
day, per machine and per
day x machine combination

\

685
230 «— |

Error t value
26. 52

5.

323

day, 16; machine, 4; day, 4—<——~\\\\\\

Check if model was
interpreted correctly
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Example: Evaluating Machine Performance

= Total variance is 179 + 34.7 + 44.7 + 57.7 = 155.

= |ndividual contributions

Interpretation

44.7

— 0

Day e = 29%
| 577 _ 309

Machine e = 37%
- 347 _ 599

Interaction T 22%

Error e 12%

155

Day to day operational differences (e.g., due to daily
calibration)

Variability in machine performance

Variability due to inconsistent behavior of machines
over days (calibration inconsistency within the same
day?)

Variation in serum samples

= Manufacturer now has to decide if some sources of

variation are too large.
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