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Complete Block Designs



 Want to compare two different eye-drops (“new” vs. 

“control”).

 Every subject gets both treatments (meaning: one per 

eye; at the same time).

 At the end, measure redness on quantitative scale in 

every eye.

 For every patient, calculate the difference “new - control”.

 Perform standard one-sample 𝑡-test with these 

differences.

Remember: Paired 𝑡-Test (Example from Elliott, 2006)
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 Instead of using both eyes of 10 patients we could also do 

a similar experiment with 

 10 patients getting the control treatment in one eye

 10 other patients getting the new treatment in one eye

 See next slide for potential data-sets.

 As mentioned in the first week, we can reduce variance

by using homogeneous experimental units.

 A set of units that is homogeneous in some sense is 

called a block.

 In this example, a block is given by a person.
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Paired 𝑡-Test
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Paired vs. Unpaired Data

control treatment:

10 patients

new treatment:

10 (other) patients

difference of treatments:

within 10 (other) patients

Mean different from zero?

Different means?

Contains person to 

person variation

Compare 

different 

variances!



 A Randomized Complete Block Design (RCB) is the 

most basic blocking design.

 Assume we have 𝑟 blocks containing 𝑔 units each.

 Here, 𝑟 = 3 blocks with 𝑔 = 4 units.

 In every of the 𝑟 blocks we randomly assign the 𝑔
treatments to the 𝑔 units, independently of the other 

blocks.

Randomized Complete Block Designs (RCB)
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 Hence, a blocking design uses a restricted 

randomization scheme. Each block gets its “own” 

randomization.

 Blocking exists at the time of randomization!

 We call a blocking design complete if every treatment is 

used in every block.

 In the standard setup, we observe every treatment (only) 

once in every block, hence we have a total of 𝑟 (the 

number of blocks) observations per treatment.

 Therefore, we have no replicates (for treatment and 

block combinations).
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Randomized Complete Block Designs (RCB)



 Researchers wanted to evaluate the effect of several 

different fertilization timing schedules on stem tissue 

nitrate amounts.

 Treatment: Six different nitrogen application timing and 

rate schedules (including a control treatment of no 

nitrogen).

 Response: Stem tissue nitrate amount.

 Experiment design: irrigated field with a water gradient 

along one direction, see next slide.

 We already know: 

Available moisture will have an influence on the response.
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Example (Example 8.1 in Kuehl, 2000)



 Any differences in plant responses caused by the water 

gradient will be associated with blocks.

 We also say: we control for the water gradient.
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Example: Layout of Experimental Design
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 𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 with the usual assumptions for 𝜖𝑖𝑗.

 By only using main effects we implicitly assume that the 

effects are additive.

 Due to the balanced design we can use our standard 

estimates (one at a time) and sum of squares.

 Typically, we are not making inference about blocks (we 

already know that blocks are different!).
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Example: Analysis

block effecttreatment effect



 The blocking may result in (very) large differences 

between units from different blocks (which is ok).

 In the model we assumed that the effects are additive.

 Meaning: the treatment effects are constant from block to 

block.

 If we only have one observation per treatment and block 

combination we can potentially only detect interaction 

effects of the multiplicative form.

 If we want to fit a model with interaction, we would need 

more than one observation per treatment and block 

combination. What does interaction mean?
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Interaction of Treatment with Block Factor



 Conceptually it is straightforward to have (e.g.) a two-

factor factorial in a randomized complete block design.

 The analysis is straightforward. In R we would just use the 
model formula Y ~ Block + A * B

 We can test the interaction 𝐴𝐵 even if we only have one 

replicate per 𝐴𝐵 combination per block.

11

Factorials in Complete Block Designs

Source df

Block 𝑟 − 1

𝐴 𝑎 − 1

𝐵 𝑏 − 1

𝐴𝐵 𝑎 − 1 ⋅ (𝑏 − 1)

Error (𝑎𝑏 − 1) ⋅ (𝑟 − 1)

Total 𝑟𝑎𝑏 − 1 # observations − 1

“Leftovers”



 Squared standard errors for treatment means are

 RCB design (what we’ve just done): 
𝜎𝑅𝐶𝐵
2

𝑟

 Completely randomized design: 
𝜎𝐶𝑅𝐷
2

𝑛

 If we want to have the same precision, we have to ensure 

that
𝜎𝑅𝐶𝐵
2

𝑟
=
𝜎𝐶𝑅𝐷
2

𝑛
.

If we know 𝜎𝑅𝐶𝐵
2 and 𝜎𝐶𝑅𝐷

2 than we have to use a ratio of

𝑛

𝑟
=
𝜎𝐶𝑅𝐷
2

𝜎𝑅𝐶𝐵
2 .
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How Much Does Blocking Increase Precision?

Number of observations per treatment



 𝜎𝑅𝐶𝐵
2 is estimated by 𝑀𝑆𝐸 of our RCB.

 What about 𝜎𝐶𝑅𝐷
2 ? 

 Can be estimated using a properly weighted average of 

𝑀𝑆𝐸 and 𝑀𝑆𝐵𝑙𝑜𝑐𝑘

 𝜎𝐶𝑅𝐷
2 = 𝑤 ⋅ 𝑀𝑆𝐵𝑙𝑜𝑐𝑘 + 1 − 𝑤 ⋅ 𝑀𝑆𝐸

where 𝑤 is some weight (see Oehlert, page 323).

 Relative efficiency is then defined as:

𝑅𝐸 =
 𝜎𝐶𝑅𝐷
2

 𝜎𝑅𝐶𝐵
2

(sometimes multiply with correction factor for df’s).

 RE gives us the ratio 
𝑛

𝑟
.
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How Much Does Blocking Increase Precision?



 In our example: relative efficiency ≈ 2.

 Meaning: A CRD would need twice as many experimental 

units to achieve the same efficiency (precision).

 Here: 8 replications per treatment (instead of 4).

 Easier for a quick check: Have a look at the ratio 
𝑀𝑆𝐵𝑙𝑜𝑐𝑘

𝑀𝑆𝐸
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How Much Does Blocking Increase Precision?

𝑀𝑆𝐵𝑙𝑜𝑐𝑘

𝑀𝑆𝐸
> 1 ⟺ Relative Efficiency > 1



 Up to now: one blocking factor involved, i.e. we can block 

on a single source of variation.

 Sometimes: need to block on more than one source.

 We will discuss some special cases.
 Latin Squares

 Graeco-Latin Squares
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More than One Blocking Factor



 An experiment tests 4 car tire treatments (𝐴, 𝐵, 𝐶, 𝐷) on 4 

cars. Response: Wear of a tire.

 Each treatment appears on one of the 4 positions of 

each car.

 Experiment set-up was as follows:
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Example: Car Tires (Kuehl, 2000, Example 8.2)

Tire 

position

1 𝐴 𝐵 𝐶 𝐷

2 𝐵 𝐶 𝐷 𝐴

3 𝐶 𝐷 𝐴 𝐵

4 𝐷 𝐴 𝐵 𝐶

Block factors



 This design is a so called Latin Square.

 Each treatment (the Latin letters) appears exactly once in 

each row and exactly once in each column.

 A Latin Square blocks on both rows and columns 

simultaneously.

 The design is very restrictive. A Latin Square needs to 

have 
 𝑔 treatments (the Latin letters)

 Two block factors each having 𝑔 levels (the rows and the columns)

 Hence, a total of 𝑔2 experimental units

 We’re only seeing 𝑔2 out of 𝑔3 possible combinations (but 

the subset we see is selected in a smart, balanced way).
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Latin Squares



 A Latin Square is nothing else than an assignment of 

treatments to units with the side constraints

 each treatment appears exactly once in each row.

 each treatment appears exactly once in each column.

 Picking a random Latin Square isn’t trivial: Fisher-Yates 

algorithm (see book for details).
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Latin Squares



 Use main effects model with treatment, row and 

column effects.

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝜖𝑖𝑗𝑘

 The design is balanced having the effect that our usual 

estimators and sums of squares are “working”.

 As in an RCB we do not test for the block effects.

 Latin Squares can have few degrees of freedom for error 

if 𝑔 is small, making detection of treatment effects difficult:
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Analysis of Latin Squares

treatment
Block factor 1

(rows)

Block factor 2

(columns)

𝑔 df of 𝑴𝑺𝑬

3 2

4 6

5 12



 Just because the design contains the word “square” 

doesn’t mean that the physical layout of the experiment 

has to be a square.

 Often, one blocking factor is time: Think of testing 5 

different machines (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) on 5 days with 5 

operators (response: yield of machine):
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Latin Squares

Operator

Mon 𝐸 𝐵 𝐶 𝐴 𝐷

Tue 𝐵 𝐷 𝐸 𝐶 𝐴

Wed 𝐴 𝐶 𝐷 𝐵 𝐸

Thu 𝐶 𝐸 𝐴 𝐷 𝐵

Fri 𝐷 𝐴 𝐵 𝐸 𝐶



 What if we have one more blocking criterion?

 Use so called Graeco Latin Squares (if applicable).

 Take a Latin Square and superimpose it with another 

block factor, denoted by Greek letters (here: think of 

driver)
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Graeco Latin Squares

Car

1 𝐴𝛼 𝐵𝛾 𝐶𝛿 𝐷𝛽

2 𝐵𝛽 𝐴𝛿 𝐷𝛾 𝐶𝛼

3 𝐶𝛾 𝐷𝛼 𝐴𝛽 𝐵𝛿

4 𝐷𝛿 𝐶𝛽 𝐵𝛼 𝐴𝛾



 The Latin letters occur once in each row and column

 The Greek letters occur once in each row and column

 In addition: each Latin letter occurs exactly once with 

each Greek letter.

 Use main effects model

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿𝑙 + 𝜖𝑖𝑗𝑘𝑙

to analyze data.
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Graeco Latin Squares
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 In practice, (Graeco) Latin Squares are often impractical

due to the very restrictive assumptions on the number 

of levels of the involved treatment and block factors.

 E.g., think of the car tire example with 7 instead of 4 tire 

treatments.

 Or going back to the intro example: What if we wanted to 

compare three different eye-drops?

 This will lead us to balanced incomplete block designs 

(BIBD), see later.
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More General Situations



 As we have seen, we treat block factors just as other 

factors in our model formulas.

 Typically, a block effect is assumed to be additive (i.e., 

main effects only).

 Block factors are not tested but they can be examined 

with respect to efficiency gain.

 ANOVA table and df’s are “as usual”.

 A possible interaction between block and treatment 

factor(s) is difficult to sell.
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General Rules for Analyzing Block Designs


