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Remember: Paired t-Test (Example from Elliott, 2006)

= Want to compare two different eye-drops (‘'new” vs.
“control”).

= Every subject gets both treatments (meaning: one per
eye; at the same time).

= At the end, measure redness on gquantitative scale in
every eye.

= For every patient, calculate the difference “new - control”.

= Perform standard one-sample t-test with these
differences.



Fictional Data Set of 10 Patients
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Paired t-Test

Instead of using both eyes of 10 patients we could also do
a similar experiment with

= 10 patients getting the control treatment in one eye

= 10 other patients getting the new treatment in one eye

See next slide for potential data-sets.

As mentioned Iin the first week, we can reduce variance
by using homogeneous experimental units.

A set of units that is homogeneous in some sense is
called a block.

In this example, a block is given by a person.



Paired vs. Unpaired Data
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Randomized Complete Block Designs (RCB)

= ARandomized Complete Block Design (RCB) is the
most basic blocking design.

= Assume we have r blocks containing g units each.
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= Here, r = 3 blocks with g = 4 units.

= |n every of the r blocks we randomly assign the g
treatments to the g units, independently of the other
blocks.



Randomized Complete Block Designs (RCB)

= Hence, a blocking design uses a restricted
randomization scheme. Each block gets its “own”
randomization.

= Blocking exists at the time of randomization!

= We call a blocking design complete if every treatment is
used in every block.

* |n the standard setup, we observe every treatment (only)
once in every block, hence we have a total of r (the
number of blocks) observations per treatment.

= Therefore, we have no replicates (for treatment and
block combinations).



Example (Example 8.1 in Kuehl, 2000)

Researchers wanted to evaluate the effect of several
different fertilization timing schedules on stem tissue
nitrate amounts.

Treatment: Six different nitrogen application timing and
rate schedules (including a control treatment of no
nitrogen).

Response: Stem tissue nitrate amount.

Experiment design: irrigated field with a water gradient
along one direction, see next slide.

We already know:
Avalilable moisture will have an influence on the response.



Example: Layout of Experimental Design
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= Any differences in plant responses caused by the water
gradient will be associated with blocks.

= We also say: we control for the water gradient.



Example: Analysis

Y;i = u+a; + p; + €;; with the usual assumptions for ¢;;.

treatment effect

block effect

= By only using main effects we implicitly assume that the
effects are additive.

= Due to the balanced design we can use our standard
estimates (one at a time) and sum of squares.

= it «<- aov(y ~ block + treatment, data = nitro)

= summary (fit)

pff Sum Sg Mean 5gq F value

block 3 197.0 65.67
Treatment 5 201.3 40, 26
Residuals 15 108.0 7.20

Pr(=F)
9.120 0.00112 ==
5.592 0.00419 ==

= Typically, we are not making inference about blocks (we
already know that blocks are different!).



Interaction of Treatment with Block Factor

The blocking may result in (very) large differences
between units from different blocks (which is ok).

In the model we assumed that the effects are additive.

Meaning: the treatment effects are constant from block to
block.

If we only have one observation per treatment and block
combination we can potentially only detect interaction
effects of the multiplicative form.

If we want to fit a model with interaction, we would need
more than one observation per treatment and block
combination. What does interaction mean?
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Factorials in Complete Block Designs

Conceptually it is straightforward to have (e.g.) a two-
factor factorial in a randomized complete block design.

The analysis is straightforward. In R we would just use the
model formulay ~ Block + A * B

Block r—1
A a—1
B b—1
AB (a—1)-(b—1)
Error (ab—1)-(r—1) < “Leftovers”
Total rab — 1 < # observations — 1

We can test the interaction AB even if we only have one
replicate per AB combination per block.
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How Much Does Blocking Increase Precision?

= Squared standard errors for treatment means are

2

= RCB design (what we’ve just done) 2RCB
. Completely randomlzed deS|gn CRZJ Number of observations per treatment

n

= |f we want to have the same precision, we have to ensure
that

2 2
Orce _ OCRD
r n -

If we know 5.5 and o5, than we have to use a ratio of

2

n _ Ocrp
= —=.

r  Ogcp
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How Much Does Blocking Increase Precision?

= g%cp is estimated by MS; of our RCB.
= What about 645p?

= Can be estimated using a properly weighted average of
MS; and MSg;, 0k

6-CZ‘RD =W - MSgock + (1 —w) - MSg
where w Is some weight (see Oehlert, page 323).

= Relative efficiency is then defined as:

~2
__ OCRD
RE = =SR2
RCB

(sometimes multiply with correction factor for df’s).

= REgives us the ratio g
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How Much Does Blocking Increase Precision?

In our example: relative efficiency = 2.

Meaning: A CRD would need twice as many experimental
units to achieve the same efficiency (precision).

Here: 8 replications per treatment (instead of 4).

Easier for a quick check: Have a look at the ratio —MIS;I“"

SE

MSBlock

> 1 < Relative Efficiency > 1
MSg
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More than One Blocking Factor

= Up to now: one blocking factor involved, i.e. we can block
on a single source of variation.

= Sometimes: need to block on more than one source.

= We will discuss some special cases.
= Latin Squares
= Graeco-Latin Squares
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Example: Car Tires (Kuehl, 2000, Example 8.2)

An experiment tests 4 car tire treatments (4,B,C,D)on 4
cars. Response: Wear of a tire.

Each treatment appears on one of the 4 positions of
each car < Block factors —

Experiment set-up was as follows:

Tire
position

S O T >
> O O ™
T > T O
a T >~ T
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Latin Squares

This design is a so called Latin Square.

Each treatment (the Latin letters) appears exactly once in
each row and exactly once in each column.

A Latin Square blocks on both rows and columns
simultaneously.

The design is very restrictive. A Latin Square needs to

have

= g treatments (the Latin letters)

= Two block factors each having g levels (the rows and the columns)
= Hence, a total of g2 experimental units

We’'re only seeing g out of g3 possible combinations (but
the subset we see is selected in a smart, balanced way).
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Latin Squares

= A Latin Square is nothing else than an assignment of
treatments to units with the side constraints

= each treatment appears exactly once in each row.
= each treatment appears exactly once in each column.

= Picking a random Latin Square isn't trivial: Fisher-Yates
algorithm (see book for details).
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Analysis of Latin Squares

Use main effects model with treatment, row and
column effects.

Vijg =u+a;+fj+ve+ €

A

Block factor 1 Block factor 2
treatment
(rows) (columns)

The design is balanced having the effect that our usual
estimators and sums of squares are “working”.

As in an RCB we do not test for the block effects.

Latin Squares can have few degrees of freedom for error
If g is small, making detection of treatment effects difficult:

g | dfotms;
3

2
4 6
12
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Latin Squares

= Just because the design contains the word “square”
doesn’t mean that the physical layout of the experiment
has to be a square.

= Often, one blocking factor is time: Think of testing 5
different machines (4,B,C, D, E) on 5 days with 5
operators (response: yield of machine):
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Graeco Latin Squares

What if we have one more blocking criterion?
Use so called Graeco Latin Squares (if applicable).

Take a Latin Square and superimpose it with another
block factor, denoted by Greek letters (here: think of
driver)

Ill%illlII[:]IIIII[:!IIIII[]IIIIII[:!III
!‘;%. Aa By Cod Df
¥ S N

= -

Bp Ab Dy Ca
Cy Da AP Bé
D6 Cp Ba Ay
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Graeco Latin Squares

The Latin letters occur once in each row and column
The Greek letters occur once in each row and column

In addition: each Latin letter occurs exactly once with

each Greek letter.

Use main effects model

Yim=u+a;+Bj+vyr+ 0+ €

to analyze data. / / \ \

treatment

Block factor 1
(rows)

Block factor 2
(columns)

Block factor 3
(Greek letters)

—

Latin squares
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More General Situations

= |n practice, (Graeco) Latin Squares are often impractical
due to the very restrictive assumptions on the number
of levels of the involved treatment and block factors.

= E.g., think of the car tire example with 7 instead of 4 tire
treatments.

= Or going back to the intro example: What if we wanted to
compare three different eye-drops?

= This will lead us to balanced incomplete block designs
(BIBD), see later.
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General Rules for Analyzing Block Designs

= As we have seen, we treat block factors just as other
factors in our model formulas.

= Typically, a block effect is assumed to be additive (i.e.,
main effects only).

= Block factors are not tested but they can be examined
with respect to efficiency gain.

= ANOVA table and df’'s are “as usual’.

= A possible interaction between block and treatment
factor(s) is difficult to sell.
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