
Lukas Meier, Seminar für Statistik

Factorial Treatment Structure: Part II



 Example: Fecundity of limpets.

 Response: Average number of eggs per snail.

 Factors: 
 𝐴: Season (2 levels: Spring / Summer)

 𝐵: Population density (3 levels: 6 / 12 / 24 limpets under wire mesh 

guard)

 Per treatment combination: 3 observations

Individual Analyses: Example (Quinn & Keough, 2000)

6 12 24

Spring

1.17
0.50
1.67

1.50
0.83
1.00

0.67
0.67
0.75

Summer

4.00
3.83
3.83

3.33
2.58
2.75

2.54
1.83
1.63
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Individual Analyses: Example (Quinn & Keough, 2000)

 Output of full model

 Output of individual models
Need individual models per season



 Can improve tests by “re-using” 𝑀𝑆𝐸 with corresponding 

df’s of full model (a better, more precise estimate of 𝜎).

 The more df’s we have for 𝑀𝑆𝐸, the more powerful the 

test will be because quantiles of the 𝐹-distribution are 

(much) smaller, as seen in previous lecture.

 E.g., for the spring data-set, the “better” 𝐹-test is:

𝑀𝑆density

𝑀𝑆𝐸
=

0.1722

0.144
= 1.2

 We have to use an 𝐹2,12-distribution, hence the 𝑝-value is

(which is only a slight improvement here).
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Individual Analyses: Example (Quinn & Keough, 2000)



 Similarly, for testing contrasts etc. we can make use of the 

global 𝜎 estimate given by 𝑀𝑆𝐸 of the full model.

 This means: whenever we have an 𝑀𝑆𝐸 in our formulas 

for the individual models, we can “plug in” the global

estimate with the corresponding degrees of freedom.

 This is especially useful if the error df’s of the individual 

model are small (say below 10).
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Individual Analyses
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Single Replicates



 If we have a factorial experiment with only one

observation per factor-level combination we cannot fit a 

full model anymore.

 Reason: Perfect fit, all residuals are zero 

(or # parameters = # observations).

 Think of two-way ANOVA situation with no replicates. If 

we have no replicates we have no index 𝑘:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜖𝑖𝑗

 Also: Remember factor 𝑛 − 1 for error in ANOVA table last 

time (i.e., we implicitly assumed 𝑛 > 1).
6

Single Replicates

Cannot distinguish between these 

two terms in 𝑛 = 1 situation.



 We can of course still fit a model without interaction term, 

i.e. a main-effects model only (= additive effects).

 If there is an underlying interaction term, we get an error 

estimate that is biased upwards (because it contains the 

error and the interaction term).

 Tests will be conservative (𝑝-values will be too large).

 See also R-File.
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Single Replicates



 Parameter estimates for main-effects model are as for 

previous model.

 ANOVA table now looks as follows:
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Single Replicates

Source df Sum of squares (SS)

𝐴 𝑎 − 1  
𝑖=1

𝑎

𝑏 ⋅  𝛼𝑖
2

𝐵 𝑏 − 1  
𝑗=1

𝑏

𝑎 ⋅  𝛽𝑗
2

Error 𝑎 − 1 ⋅ (𝑏 − 1)  
𝑖=1

𝑎

 
𝑗=1

𝑏

𝑦𝑖𝑗 − (  𝜇 +  𝛼𝑖 +  𝛽𝑗)
2

Total 𝑎𝑏 − 1  
𝑖=1

𝑎

 
𝑗=1

𝑏

𝑦𝑖𝑗 −  𝑦⋅⋅
2

#𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 − 1 df of total−sum(𝑑𝑓 𝑎𝑏𝑜𝑣𝑒)

fitted value



 If we have no replicates and more than two factors we 

would typically remove some of the higher-order 

interaction terms.

 This means: We put them into the error term (the df’s of 

the error term will therefore increase).

 Often: Transformations of the response help getting rid of 

interactions, see blackboard.

 Alternative: Tukey one-degree-of freedom model for 

interaction (see next slide).
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Single Replicates



 Tukey’s idea was to use only one additional parameter for 

the interaction term.

 For the two-factor model it is

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜆𝛼𝑖𝛽𝑗 + 𝜖𝑖𝑗

 This is a very special form of interaction.

 Some add-on packages can test 𝐻0: 𝜆 = 0 (we will not 

discuss this any further).
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Tukey One-Degree of Freedom Interaction

Here, interaction actually is the 

product of the main-effects!
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Contrasts for Factorial Data



 As we have already seen in the one-way ANOVA 

situation, contrasts can be used to get a more precise 

picture or to answer more specific question.

 Contrasts can of course also be used for factorial data 

structure.

 E.g., perform a pairwise comparison between all 

possible treatment combinations (think of having one 

“huge” cell means model with all the treatment 

combinations as levels).

 We can also construct “main-effects” contrasts.

 See R-File for examples.
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Contrasts for Factorial Data
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Unbalanced Data



 Up to now we assumed that our factorial data is 

balanced, i.e. all the “cells” contained the same number 

of replicates (= 𝑛).

 This assumption is crucial for the decomposition of the 

total variability into the different sources.

 With balanced data we can estimate the effects of a factor 

by ignoring the remaining factors.

 Unbalanced data destroy these properties.

 Calculations are more involved. No independent 

estimates anymore and no unique decomposition either.
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Unbalanced Data
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Unbalanced Data: Toy Example

Consider the following data-set for a sports experiment 

(running time in seconds for a specific track, unpaired data). 

In red: number of observations.

Energy Drink A Energy Drink B

Men

40.6, 49.7, 42.1, 42.2, 

39.0, 44.2, 44.1, 43.1, 

44.7, 46.3

49.7, 48.1, 49.7, 52.0, 

51.5, 49.9, 55.6, 53.0, 

53.5, 51.1

Women

55.7, 61.0, 58.0, 54.1, 

51.9, 54.2, 54.4, 55.4, 

55.4, 56.1

62.0, 60.3, 59.9, 61.2,

66.2, 56.5, 59.7, 63.0,

58.4, 61.7, 61.4, 62.6,

56.8, 55.2, 66.1, 60.6,

58.9, 59.1, 56.8, 62.5,

58.5, 61.3, 62.2, 62.5,

60.8, 57.1, 61.6, 65.9,

58.6, 60.6, 56.1, 53.6,

62.4, 62.2, 59.2, 62.9,

57.0, 58.5, 60.9, 63.4,



4
0

4
5

5
0

5
5

6
0

6
5

A B
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Unbalanced Data: Toy Example

Interaction plot. Circle area proportional to sample size

women

men



 If we simply ignore the “gender” structure and estimate 

the drink effect we are estimating the wrong effect.

 Why? We have more women with Energy Drink 𝑩.

 Gender and Energy Drink are correlated in this example.

 When moving from Drink 𝐴 to Drink 𝐵 we are also moving 

to a different gender structure.

 In the balanced case this would not happen.
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Unbalanced Data: Toy Example



 Hence, we can’t estimate the parameters one at a time 

anymore.

 Parameters have to be estimated simultaneously using 

the principle of least squares (no problem for the 

computer).

 Parameter estimates estimate the “right thing”.

 Similarly: Sum of squares cannot be partitioned into 

different sources anymore.

 Note: There are unbalanced situations that are still “nice”.
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Unbalanced Data: Toy Example



 “Solution” to decomposition of sum of squares: use model 

comparison approach.

 Remember: 𝑆𝑆𝐵 (and the other sum of squares) can be 

thought of as the reduction of residual sum of squares 

when adding the factor 𝐵 to our model.

 In the balanced case, it does not matter whether we have 

𝐴 (or 𝐴𝐵) in our model or not: 𝑆𝑆𝐵 is always the same.

 For unbalanced data, 𝑆𝑆𝐵 depends on the remaining 

terms in the model.

 Notation: 𝑆𝑆(𝐵 ∣ 1, 𝐴) is reduction of error sum of 

squares when comparing the models (1, 𝐴, 𝐵) with 1, 𝐴 .
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Unbalanced Data

𝜇



 Model terms in two-way ANOVA situation: (1, 𝐴, 𝐵, 𝐴𝐵)

 Could have a look at
 𝑆𝑆(𝐴 ∣ 1)

 𝑆𝑆(𝐵 ∣ 1, 𝐴)

 𝑆𝑆(𝐴 ∣ 1, 𝐵)

 𝑆𝑆(𝐴𝐵 ∣ 1, 𝐴, 𝐵)

 𝑆𝑆 𝐴 1, 𝐵, 𝐴𝐵

 …

 𝑆𝑆𝐸 or 𝑀𝑆𝐸 are typically taken from the full model 

(including all terms).
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Unbalanced Data



 Type I: Sequential sum of squares

Sequentially build up model

 𝑆𝑆 𝐴 1

 𝑆𝑆(𝐵 ∣ 1, 𝐴)

 𝑆𝑆(𝐴𝐵 ∣ 1, 𝐴, 𝐵)

 Hence: Depends on ordering of factors!

 R: aov

 Type II: Hierarchical / partially sequential approach

Control for the influence of the largest hierarchical model not 

including the term of interest.

 𝑆𝑆 𝐴 1, 𝐵

 𝑆𝑆 𝐵 1, 𝐴

 𝑆𝑆 𝐴𝐵 1, 𝐴, 𝐵

 R: Function Anova in package car.
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Different Types of Sum of Squares
Terminology from SAS

𝐴
𝐵

𝐴
𝐵



 Type III: Fully adjusted / marginal approach

Control for all other terms

 𝑆𝑆 𝐴 1, 𝐵, 𝐴𝐵 (meaningful?)

 𝑆𝑆 𝐵 1, 𝐴, 𝐴𝐵 (meaningful?)

 𝑆𝑆 𝐴𝐵 1, 𝐴, 𝐵

 R: drop1

 Typically the preferred type.
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Different Types of Sum of Squares



R FAQ 7.18: Why does the output from anova() depend 

on the order of factors in the model?

 In a model such as ~A+B+A:B, R will report the difference in sums of squares between 

the models ~1, ~A, ~A+B and ~A+B+A:B. If the model were ~B+A+A:B, R would report 

differences between ~1, ~B, ~A+B, and ~A+B+A:B . In the first case the sum of 

squares for A is comparing ~1 and ~A, in the second case it is comparing ~B and 

~B+A. In a non-orthogonal design (i.e., most unbalanced designs) these comparisons 

are (conceptually and numerically) different.

 Some packages report instead the sums of squares based on comparing the full model 

to the models with each factor removed one at a time (the famous ‘Type III sums of 

squares’ from SAS, for example). These do not depend on the order of factors in the 

model. The question of which set of sums of squares is the Right Thing provokes 

low-level holy wars on R-help from time to time.

 There is no need to be agitated about the particular sums of squares that R 

reports. You can compute your favorite sums of squares quite easily. Any two 

models can be compared with anova(model1, model2), and drop1(model1) will 

show the sums of squares resulting from dropping single terms. 
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In R…
or aov



 With balanced data we always get the same result, no 

matter what type we use.

 For main-effects only models, type II and type III coincide.

 Type I is useful if there is some intrinsic ordering of the

terms.

 If there is a significant interaction, tests of the

corresponding main-effects are typically difficult to

interpret.
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Recommendations / Comments


