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Problem with Global F-test

= Problem: Global F-test (aka omnibus F-test) '
IS very unspecific. :

= Typically: Want a more precise answer (or have a more
specific question) on how the group means differ.

= Examples

= Compare new treatments with control treatment (reference
treatment).

= Do pairwise comparisons between all treatments.

= A specific question can typically be formulated as an
appropriate contrast.



Contrasts: Simple Example

= Want to compare group 2 with group 1 (don’t care about
the remaining groups for the moment).

" Hoiply = Up VS. Hyt py # Uy,
= Equivalently: Hy: iy — i, = 0 vSs. Hy: iy — u, # 0.
= The corresponding contrast would be ¢ = (1,-1,0,0, ..., 0).

= Acontrast c € RY is a vector that encodes the null

hypothesis in the sense that
g

HO:ZCL",UL' =0

=1
= Acontrast is nothing else than an encoding of your
research question.



Contrasts: Formal Definition

= Formally, a contrast is nothing else than a vector
¢ = (c1,€3...,C4) ERY

with the constraint that })7_. ¢; = 0.

= The constraint reads: “contrast coefficients add to zero”.

= The side constraint ensures that the contrast is about
differences between group means and not about the
overall level of our response.

= Mathematically speaking, c is orthogonal to (1,1, ...,1) or
(1/g9,1/g,...,1/g) which is the overall mean.

= Means: Contrasts don’t care about the overall mean.



More Examples using Meat Storage Data

= Treatments were
1) Commercial plastic wrap (ambient air) |
2) Vacuum package
3) 1% CO, 40% O,, 59% N
4) 100% CO, _

- Current techniques (control groups)

-
—

- New techniques

= Possible questions and their corresponding contrasts

Corresponding contrast ¢ € R*

N old 1 111
eWVs. 2' " 2'2'2
11
New vs. Vacuum 0,—-1,=-,=
2 2
CO, vs. Mixed (0,0,—1,1)

Mixed vs. Commercial (-1,0,1,0)



Global F-Test vs. Contrasts

As explained in Oehlert (2000):

= “ANOVA is like background lighting that dimly
IHluminates the data but not giving enough light to see
details.”

= “Acontrast is like using a spotlight; it enables us to focus
In on a specific, narrow feature of the data [...] but it
does not give the overall picture.”

= |ntuitively: “By using several contrasts we can move our
focus around and see more features of the data.”




Inference for Contrasts

= \We estimate the value

Ci * My

e

=1

g
Zci'f’i-

i=1

with

l.e. we simply replace u; by its estimate y;.
= The corresponding standard error can be easily derived.

= This information allows us to construct tests and
confidence intervals.

= See blackboard for detalls.



Sum of Squares of a Contrast

= We can also compute an associated sum of squares

9 5.
SSC — (Zi=1 Ci J;l)

»9 L

l=1nl

having one degree of freedom, hence MS,. = S§,.

= This looks unintuitive at first sight but it is nothing else
than the square of the t-statistic of our null hypothesis
Hy: %, ¢ - w; = 0 (without the MS; factor).

MS,
MSE

= Hence, ~ F} n—g under Hy.

= Again: Nothing else than a squared version of the t-test.



Contrasts iIn R

= Multiple options
= Directlyin R
= Package multcomp (will also be very useful later)
= Many more...

= See the corresponding R-script for details.



Orthogonal contrasts

Two contrasts ¢ and c* are called orthogonal, if
g _
., Ci ¢ /n;=0.

Orthogonal contrasts contain independent information.

If there are g groups, one can find g — 1 different
orthogonal contrasts (1 dimension already used by global
mean (1, ...,1).

However, infinitely many possibilities...




Decomposition of Sum of Squares

= Asetof orthogonal contrasts partitions the treatment
sum of squares.

* |t means: the sum of the contrast sum of squares is SS,,
I.e. for orthogonal contrasts ¢y, ¢y, ..., ¢4—1 It holds that

SSe, + SS¢, + -+ SSc,_, = SSry

= [ntuition: “We get all the information about the treatment
by pointing the spotlight at all directions.”

e It's your research hypotheses that define the
contrasts, not the orthogonality criterion.




Multiple Testing




Multiple Comparisons

= The more tests we perform, the more likely we are doing
at least one type | error (i.e., falsely rejecting Hy).

= More formally: Perform m tests: Hy ;,j = 1, ..., m.
= Ifall Hy; are true and if all tests are independent:
Probability to make at least one false rejection is given by
1—-(1—a)™
where «a is the (individual) significance level.

= Fora = 0.05and m = 50 thisis 0.92 (!)

12



Multiple Comparisons

= The more tests we perform, the more likely we are
getting some significant result.

= |f we test many null-hypotheses, we expect to reject some
of them, even if they are all true.

= |f we start data-fishing (i.e., screening data for “special”
patterns) we (implicitly) do a lot of tests.
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Different Error Rates
= Consider testing m hypotheses, whereof m, are true.

= These are the potential outcomes:

_

Significant Discoveries

Not significant —R
Total /

Type | errors Type Il errors

= Comparisonwise error rate is type | error rate of an
individual test.

= Family-wise (FWER) (or experimentwise) error rate is
the probability of rejecting at least one of the true Hy's:

FWER = P(V > 0) 2



Different Error Rates

= A procedure is said to control the FWER at level a in the
strong sense, If

X FWER < «

for any configuration of true and non-true null
hypotheses.

= The false discovery rate (FDR) is the expected fraction
of false discoveries, i.e.

FDR = E v
IR

[

false discovery fraction
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Confidence Intervals
= Typically, each H, corresponds to a parameter.
= \We can construct confidence intervals for each of them.

= We call these confidence intervals simultaneous at level
(1 — a) if the probability that all intervals cover the
corresponding true parameteris 1 — a.

= |ntuition: Can look at all confidence intervals and get the
correct “big picture” with probability 1 — «.

= Remember: For 20 individual 95% confidence intervals it
holds that on average one doesn’t cover the true value.
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Overview of Multiple Testing Procedures

Control of Family-Wise Error Rate

- Bonferroni (conservative)

- Bonferroni-Holm (better version of Bonferroni)

- Scheffé (for search over all possible contrasts, conservative)
- Tukey-HSD (for pairwise comparisons)

- Multiple Comparison with a Control

False Discovery Rate (see book)
- Benjamini-Hochberg
- Benjamini-Yekutieli
- Others




Bonferroni

Use more restrictive significance level a* = %

That's it!

This controls the family-wise error rate. No assumption
regarding independence required (see blackboard) .

Equivalently: Multiply all p-values by m and keep using
the original «.

Can get quite conservative if m is large.

The corresponding confidence intervals (based on the
adjusted significance level) are simultaneous.
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Bonferroni-Holm

Less conservative and hence (uniformly) more
powerful than Bonferroni.

Sort p-values from small to large: p(1y, D2y, -+ Pm)-

(04

For j = 1,2, ... Reject null hypothesis if p;y < LY

Stop when you reach the first non-significant p-value.

Only the smallest p-value has the traditional Bonferroni
correction, hence more powerful.

R: p.adjust etc.

This is a so called step-down procedure.
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Scheffé

Controls for search over any possible contrast...

This means:

You are even allowed to perform data-fishing and test the
most extreme contrast you'll find (really!).

These p-values are honest (really!)
Sounds too good to be true!

Theory:

= SS. < (g — 1)MSr,, for any contrast ¢ (because SSt,, = SS; + -+*)
SS,.
MSE

= Hence, <(g-— 1)M for any contrast c.
g MSE

SS¢/(g—-1) MSTyt
< ~ ' — cee — .
Ms. = s, Fy_1 n—g under Hy: py Ly

= Therefore, max
C
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Scheffé

= The price for the nice properties are low power (meaning:
test will not reject often when H, is not true).

= |f F-testis not significant: don’t even have to start
searching!

n R

= Calculate F-ratio (MS./MSg) as if “ordinary” contrast.
= Use (g — 1) - Fy_1, n—g,1-¢ as critical value (instead of F; y_;1-4)
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Pairwise Comparisons

= A pairwise comparison is nothing else than comparing two
specific treatments (e.g., “Vacuum” vs. “CO.")

= This is a multiple testing problem because there are
g—1
97
possible comparisons (basically a lot of two-sample t-tests).

= Hence, we need a method which adjusts for this multiple
testing problem in order to control the family-wise error rate.

= Simplest solution: apply Bonferroni correction.

= Better (more powerful): Tukey Honest Significant Difference.
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Tukey Honest Significant Difference (HSD)

Start with statistics of t-test (here for the balanced case)

7. — ;]
JiiSE (2 + )
n n
Use the distribution of B
Yi. . Y.
max — Min

Q\/MSEl/nif JMSg1/n

(the so called studentized range) for critical values.

Means: “How does the maximal difference between
groups behave?”

If all the means are equal (H,), this is the studentized
range distribution. (R: ptukey)
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Tukey Honest Significant Difference (HSD)

= Tukey honest significant difference uses this studentized
range distribution to construct simultaneous confidence
Intervals for differences between all pairs.

= ...and calculates p-values such that the family-wise error
rate is controlled.

= R: TukeyHSD or Package multcomp (see R-file for
demo)

= Tukey HSD better (more powerful) than Bonferroni if all
pairwise comparisons are of interest.

= If only a subset: re-consider Bonferroni.
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Interpreting and Displaying the Results

= A non-significant difference does not imply equality.

Reason:

“Absence of evidence is not evidence of absence”.

Results can be displayed using

= Same letters/numbers for treatments with non-significant
difference.

= Matrix (upper or lower triangle) with p-values
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Mutiple Comparison with a Control (MCC)

= Often: Compare all treatments with a (specific) control
treatment.

= Hence, do g — 1 (pairwise) comparisons with the control
group.

= Dunnett procedure constructs simultaneous confidence
intervals for y; — pg,i =1,...,g — 1 (assuming group g is
control group).

= R: Use package multcomp.
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What about F-test?

= Can | only do pairwise comparisons :
etc. if the omnibus F-test is significant?

= No, although many textbooks recommend this.

= The presented procedures have a multiple-testing
correction built-in.

= Conditioning on a significant F-test makes them over-
conservative.

= Moreover, the conditional error or coverage rates can
be (very) bad.



Statistical Significance vs. Practical Relevance

= An effect that is statistically significant is not necessarily
of practical relevance.

= |nstead of simply reporting p-values one should always
consider the corresponding confidence intervals.

= Background knowledge should be used to judge when
an effect is potentially relevant.
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Recommendations

= Planned contrasts: Bonferroni (or no correction)
= All pairwise comparisons: Tukey HSD

= Comparison with a control: Dunnett

= Unplanned contrasts: Scheffé
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