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Specific Differences



 Problem: Global 𝐹-test (aka omnibus 𝑭-test) 

is very unspecific.

 Typically: Want a more precise answer (or have a more 

specific question) on how the group means differ.

 Examples

 Compare new treatments with control treatment (reference 

treatment).

 Do pairwise comparisons between all treatments.

 ….

 A specific question can typically be formulated as an 

appropriate contrast.
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Problem with Global 𝐹-test



 Want to compare group 2 with group 1 (don’t care about 

the remaining groups for the moment).

 𝐻0: 𝜇1 = 𝜇2 vs. 𝐻𝐴: 𝜇1 ≠ 𝜇2.

 Equivalently: 𝐻0: 𝜇1 − 𝜇2 = 0 vs. 𝐻𝐴: 𝜇1 − 𝜇2 ≠ 0.

 The corresponding contrast would be 𝑐 = 1,−1, 0, 0,… , 0 .

 A contrast 𝑐 ∈ ℝ𝑔 is a vector that encodes the null 

hypothesis in the sense that

𝐻0: 

𝑖=1

𝑔

𝑐𝑖 ⋅ 𝜇𝑖 = 0

 A contrast is nothing else than an encoding of your 

research question.
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Contrasts: Simple Example



 Formally, a contrast is nothing else than a vector

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑔) ∈ ℝ
𝑔

with the constraint that  𝑖=1
𝑔
𝑐𝑖 = 0.

 The constraint reads: “contrast coefficients add to zero”.

 The side constraint ensures that the contrast is about 

differences between group means and not about the 

overall level of our response.

 Mathematically speaking, 𝑐 is orthogonal to 1, 1,… , 1 or 

1/𝑔, 1/𝑔,… , 1/𝑔 which is the overall mean.

 Means: Contrasts don’t care about the overall mean.
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Contrasts: Formal Definition



 Treatments were
1) Commercial plastic wrap (ambient air)

2) Vacuum package

3) 1% CO, 40% O2, 59% N

4) 100% CO2

 Possible questions and their corresponding contrasts
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More Examples using Meat Storage Data

Current techniques (control groups)

New techniques

Comparison Corresponding contrast 𝑐 ∈ ℝ4

New vs. Old −
1

2
,−
1

2
,
1

2
,
1

2

New vs. Vacuum 0,−1,
1

2
,
1

2

CO2 vs. Mixed 0, 0, −1,1

Mixed vs. Commercial −1, 0, 1, 0



As explained in Oehlert (2000):

 “ANOVA is like background lighting that dimly 

illuminates the data but not giving enough light to see 

details.”

 “A contrast is like using a spotlight; it enables us to focus 

in on a specific, narrow feature of the data […] but it 

does not give the overall picture.”

 Intuitively: “By using several contrasts we can move our 

focus around and see more features of the data.”
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Global 𝐹-Test vs. Contrasts

vs.



 We estimate the value 

 

𝑖=1

𝑔

𝑐𝑖 ⋅ 𝜇𝑖

with 

 

𝑖=1

𝑔

𝑐𝑖 ⋅  𝑦𝑖⋅

i.e. we simply replace 𝜇𝑖 by its estimate  𝑦𝑖⋅

 The corresponding standard error can be easily derived.

 This information allows us to construct tests and 

confidence intervals.

 See blackboard for details.
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Inference for Contrasts



 We can also compute an associated sum of squares 

𝑆𝑆𝑐 =
 
𝑖=1
𝑔
𝑐𝑖  𝑦𝑖⋅

2

 
𝑖=1
𝑔 𝑐𝑖
2

𝑛𝑖

having one degree of freedom, hence 𝑀𝑆𝑐 = 𝑆𝑆𝑐.

 This looks unintuitive at first sight but it is nothing else 

than the square of the 𝑡-statistic of our null hypothesis 

𝐻0:  𝑖=1
𝑔
𝑐𝑖 ⋅ 𝜇𝑖 = 0 (without the 𝑀𝑆𝐸 factor).

 Hence, 
𝑀𝑆𝑐

𝑀𝑆𝐸
∼ 𝐹1, 𝑁−𝑔 under 𝐻0. 

 Again: Nothing else than a squared version of the 𝒕-test.
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Sum of Squares of a Contrast



 Multiple options

 Directly in R

 Package multcomp (will also be very useful later)

 Many more…

 See the corresponding R-script for details.
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Contrasts in R



 Two contrasts 𝑐 and 𝑐∗ are called orthogonal, if 

 𝑖=1
𝑔
𝑐𝑖 ⋅ 𝑐𝑖

∗/𝑛𝑖 = 0.

 Orthogonal contrasts contain independent information.

 If there are 𝑔 groups, one can find 𝑔 − 1 different 

orthogonal contrasts (1 dimension already used by global 

mean (1,… , 1).

 However, infinitely many possibilities…
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Orthogonal contrasts



 A set of orthogonal contrasts partitions the treatment 

sum of squares.

 It means: the sum of the contrast sum of squares is 𝑆𝑆𝑇𝑟𝑡, 
i.e. for orthogonal contrasts 𝑐1, 𝑐2, … , 𝑐𝑔−1 it holds that

𝑆𝑆𝑐1 + 𝑆𝑆𝑐2 +⋯+ 𝑆𝑆𝑐𝑔−1 = 𝑆𝑆𝑇𝑟𝑡

 Intuition: “We get all the information about the treatment  

by pointing the spotlight at all directions.”

10

Decomposition of Sum of Squares

It’s your research hypotheses that define the 

contrasts, not the orthogonality criterion.
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Multiple Testing



 The more tests we perform, the more likely we are doing 

at least one type I error (i.e., falsely rejecting 𝐻0).

 More formally: Perform 𝑚 tests: 𝐻0,𝑗 , 𝑗 = 1,… ,𝑚.

 If all 𝐻0,𝑗 are true and if all tests are independent: 

Probability to make at least one false rejection is given by

1 − 1 − 𝛼 𝑚

where 𝛼 is the (individual) significance level.

 For 𝛼 = 0.05 and 𝑚 = 50 this is 0.92 (!)
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Multiple Comparisons
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Multiple Comparisons

 The more tests we perform, the more likely we are 

getting some significant result.

 If we test many null-hypotheses, we expect to reject some 

of them, even if they are all true.

 If we start data-fishing (i.e., screening data for “special” 

patterns) we (implicitly) do a lot of tests.



 Consider testing 𝑚 hypotheses, whereof 𝑚0 are true.

 These are the potential outcomes:

 Comparisonwise error rate is type I error rate of an 

individual test.

 Family-wise (FWER) (or experimentwise) error rate is 

the probability of rejecting at least one of the true 𝐻0’s:

FWER = 𝑃(𝑉 > 0) 14

Different Error Rates

𝑯𝟎 true 𝑯𝟎 false Total

Significant 𝑉 𝑆 𝑅

Not significant 𝑈 𝑇 𝑚 − 𝑅

Total 𝑚0 𝑚 −𝑚0 𝑚

Type I errors Type II errors

Discoveries



 A procedure is said to control the FWER at level 𝛼 in the 

strong sense, if 

𝐹𝑊𝐸𝑅 ≤ 𝛼

for any configuration of true and non-true null 

hypotheses.

 The false discovery rate (FDR) is the expected fraction 

of false discoveries, i.e.

𝐹𝐷𝑅 = 𝐸
𝑉

𝑅
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Different Error Rates

false discovery fraction



 Typically, each 𝐻0 corresponds to a parameter.

 We can construct confidence intervals for each of them.

 We call these confidence intervals simultaneous at level

1 − 𝛼 if the probability that all intervals cover the 

corresponding true parameter is 1 − 𝛼.

 Intuition: Can look at all confidence intervals and get the 

correct “big picture” with probability 1 − 𝛼.

 Remember: For 20 individual 95% confidence intervals it 

holds that on average one doesn’t cover the true value.
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Confidence Intervals
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Control of Family-Wise Error Rate
- Bonferroni (conservative)

- Bonferroni-Holm (better version of Bonferroni)

- Scheffé (for search over all possible contrasts, conservative)

- Tukey-HSD (for pairwise comparisons)

- Multiple Comparison with a Control

False Discovery Rate (see book)
- Benjamini-Hochberg

- Benjamini-Yekutieli

- Others

Overview of Multiple Testing Procedures



 Use more restrictive significance level 𝛼∗ =
𝛼

𝑚
.

 That’s it!

 This controls the family-wise error rate. No assumption 

regarding independence required (see blackboard) .

 Equivalently: Multiply all 𝑝-values by 𝑚 and keep using 

the original 𝛼.

 Can get quite conservative if 𝑚 is large.

 The corresponding confidence intervals (based on the 

adjusted significance level) are simultaneous.
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Bonferroni



 Less conservative and hence (uniformly) more 

powerful than Bonferroni.

 Sort 𝑝-values from small to large: 𝑝(1), 𝑝 2 , … , 𝑝 𝑚 .

 For 𝑗 = 1, 2, …: Reject null hypothesis if 𝑝(𝑗) ≤
𝛼

(𝑚−𝑗+1)
.

 Stop when you reach the first non-significant 𝑝-value.

 Only the smallest 𝑝-value has the traditional Bonferroni

correction, hence more powerful.

 R: p.adjust etc.

 This is a so called step-down procedure.
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Bonferroni-Holm



 Controls for search over any possible contrast…

 This means: 

You are even allowed to perform data-fishing and test the

most extreme contrast you’ll find (really!).

 These 𝑝-values are honest (really!)

 Sounds too good to be true!

 Theory: 

 𝑆𝑆𝑐 ≤ 𝑔 − 1 𝑀𝑆𝑇𝑟𝑡 for any contrast 𝑐 (because 𝑆𝑆𝑇𝑟𝑡 = 𝑆𝑆𝑐 +⋯)

 Hence, 
𝑆𝑆𝑐

𝑀𝑆𝐸
≤ 𝑔 − 1

𝑀𝑆𝑇𝑟𝑡

𝑀𝑆𝐸
for any contrast 𝑐.

 Therefore, max
𝑐

𝑆𝑆𝑐 /(𝑔−1)

𝑀𝑆𝐸
≤
𝑀𝑆𝑇𝑟𝑡

𝑀𝑆𝐸
∼ 𝐹𝑔−1, 𝑁−𝑔 under 𝐻0: 𝜇1 = ⋯ = 𝜇𝑔.
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Scheffé



 The price for the nice properties are low power (meaning: 

test will not reject often when 𝐻0 is not true).

 If 𝐹-test is not significant: don’t even have to start 

searching!

 R: 
 Calculate 𝐹-ratio (𝑀𝑆𝑐/𝑀𝑆𝐸) as if “ordinary” contrast.

 Use 𝑔 − 1 ⋅ 𝐹𝑔−1, 𝑁−𝑔,1−𝛼 as critical value (instead of 𝐹1, 𝑁−𝑔,1−𝛼)
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Scheffé



 A pairwise comparison is nothing else than comparing two 

specific treatments (e.g., “Vacuum” vs. “CO2”)

 This is a multiple testing problem because there are 

𝑔 ⋅
𝑔−1

2

possible comparisons (basically a lot of two-sample 𝑡-tests).

 Hence, we need a method which adjusts for this multiple 

testing problem in order to control the family-wise error rate.

 Simplest solution: apply Bonferroni correction.

 Better (more powerful): Tukey Honest Significant Difference.
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Pairwise Comparisons



 Start with statistics of 𝑡-test (here for the balanced case)

 𝑦𝑖⋅ −  𝑦𝑗⋅

𝑀𝑆𝐸
1
𝑛
+
1
𝑛

 Use the distribution of

max
𝑖

 𝑦𝑖⋅

𝑀𝑆𝐸1/𝑛
−min
𝑗

 𝑦𝑗⋅

𝑀𝑆𝐸1/𝑛

(the so called studentized range) for critical values.

 Means: “How does the maximal difference between 

groups behave?”

 If all the means are equal (𝐻0), this is the studentized
range distribution. (R: ptukey)
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Tukey Honest Significant Difference (HSD)



 Tukey honest significant difference uses this studentized

range distribution to construct simultaneous confidence 

intervals for differences between all pairs.

 …and calculates 𝑝-values such that the family-wise error 

rate is controlled.

 R: TukeyHSD or Package multcomp (see R-file for 

demo)

 Tukey HSD better (more powerful) than Bonferroni if all 

pairwise comparisons are of interest.

 If only a subset: re-consider Bonferroni.
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Tukey Honest Significant Difference (HSD)



 A non-significant difference does not imply equality.

 Reason:

“Absence of evidence is not evidence of absence”.

 Results can be displayed using

 Same letters/numbers for treatments with non-significant 

difference.

 Matrix (upper or lower triangle) with p-values

 …
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Interpreting and Displaying the Results



 Often: Compare all treatments with a (specific) control 

treatment.

 Hence, do 𝑔 − 1 (pairwise) comparisons with the control 

group.

 Dunnett procedure constructs simultaneous confidence 

intervals for 𝜇𝑖 − 𝜇𝑔, 𝑖 = 1,… , 𝑔 − 1 (assuming group 𝑔 is 

control group).

 R: Use package multcomp.
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Mutiple Comparison with a Control (MCC)



 Can I only do pairwise comparisons

etc. if the omnibus 𝐹-test is significant?

 No, although many textbooks recommend this.

 The presented procedures have a multiple-testing 

correction built-in.

 Conditioning on a significant 𝐹-test makes them over-

conservative.

 Moreover, the conditional error or coverage rates can 

be (very) bad.

What about 𝐹-test?



 An effect that is statistically significant is not necessarily 

of practical relevance.

 Instead of simply reporting 𝑝-values one should always 

consider the corresponding confidence intervals.

 Background knowledge should be used to judge when 

an effect is potentially relevant.
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Statistical Significance vs. Practical Relevance



 Planned contrasts: Bonferroni (or no correction)

 All pairwise comparisons: Tukey HSD

 Comparison with a control: Dunnett

 Unplanned contrasts: Scheffé
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Recommendations


