

Kategorielle Daten

Seminar für Statistik Markus Kalisch | 1

Phase 3 Studie: Wirksamer als Placebo?

	Medikament	Placebo	Total
Geheilt	15	9	24
Nicht geheilt	10	11	21
Total	25	20	45

Grundfrage: Sind "Heilung" und "Medikamentengabe" unabhängig?

Seminar für Statistik Markus Kalisch | 2

Statistische Tests für Tabellen

- Fisher's Exact Test: 2 x 2 Tabellen
 Verteilung der Teststatistik exakt
- Chi-Quadrat Test: m x n Tabellen
 Verteilung der Teststatistik asymptotisch bekannt
- Logistische Regression: 2 x m Tabellen; auch Mix aus mehreren kontinuierlichen und kategoriellen erklärenden Variablen möglich Verteilung der Teststatistik asymptotisch bekannt Multiple oder einfache?

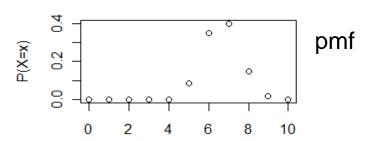
Wdh: Hypergeometrische Verteilung

- Situation: Urne mit N Kugeln; m sind markiert; ziehen n Kugeln ohne Zurücklegen; wie viele markierte Kugeln?
- ZV X: Anzahl markierter gezogener Kugeln
- X ~ Hyper(N, n, m)
 "X ist hypergeometrisch verteilt mit Paramtern N, n und m"

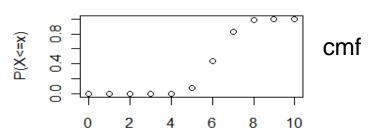
$$P(X = x) = \frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$$
 'günstig', $x \in \{0,1,...,\min(n,m)\}$

• $E(X) = \frac{n \cdot m}{N}$, Var(X) kompliziert; siehe z.B. Wikipedia

Hyper(15,10,10)



Χ



Х

Bsp: Phase 3 Studie – Wirksamer als Placebo?

Doppel-blinde, randomisierte Studie

Gezogene und markierte Bälle

	Medikament	Placebo	Total
Geheilt	15	9	24
Nicht geheilt	10	11	21
Total	25	20	45_

Gezogene Bälle (n)

Bälle in Urne (N)

Markierte Bälle (m)

Falls Medikament keine Wirkung hat: Es gibt 24
 Personen, bei denen unabhängig von der
 Gruppenzuteilung fest steht, dass sie gesund werden

Urnenmodell

Fisher's Exact Test: Spalten und Zeilen unabhängig?

	Medikament	Placebo	Total
Geheilt	15	9	24
Nicht geheilt	10	11	21
Total	25	20	45

- ZV X: Anzahl geheilter Patienten in Medikamenten-Gruppe
- Falls Medikament keine Wirkung hat:

$$X \sim Hyper(N = 45, m = 24, n = 25)$$

- Ist es dann plausibel in der Medikamenten-Gruppe 15 oder mehr geheilte Patienten zu beobachten?
- $P(X \ge 15) = 1 P(X \le 14) = 1 0.76 = 0.24$ P-Wert R: phyper(14,24,21,25)
- Falls das Medikament nicht wirkt, ist es durchaus plausibel 15 oder mehr geheilte Patienten in der Medikamentengruppe zu beobachten

Wdh: Odds und Odds-Ratio

	Medikament	Placebo	Total
Geheilt	15	9	24
Nicht geheilt	10	11	21
Total	25	20	45

Alternative Beschreibung von Wahrscheinlichkeiten

- Odds(A) = P(A) / (1 P(A))
- -P(A) = Odds(A) / (1 + Odds(A))
- Log-Odds(A) = log(Odds(A))

Wirksamkeit von Medikament kann mit Odds-ratio ausgedrückt werden

Odds(Geheilt) = (24/45) / (21/45) = 24/21 = 1.14Odds(Geheilt mit Medi) = (15/25) / (10/25) = 15/10 = 1.5Odds(Geheilt ohne Medi) = (9/20) / (11/20) = 9/11 = 0.82Odds-ratio: Odds(Geheilt mit Medi) / Odds(Geheilt ohne Medi) = 1.5 / 0.82 = 1.83

Fisher's Exact Test in R

```
Einseitige Alternative:
    \leftarrow matrix(c(15,10,9,11),2,2)
                                               Grössere Macht ein wirksames
> m
                                               Medikament zu finden
     [,1] [,2]
[1.]
                                               Blind für unwirksame Medikamente
[2,]
> fisher.test(m, alternative = "greater")
Fisher's Exact Test for Count Data
                               P-Wert
data:
p-value = 0.2416
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 0.5753718
                 Inf ←
sample estimates:
                                             Einseitiges 95%-Vertrauensintervall
odds ratio
                                                         für Odds-ratio
  1.808415
                 Odds-ratio
```

R verwendet spezielle numerische Methoden um das Odds ratio zu bestimmen; es kann daher leichte Unstimmigkeiten zur Berechnung von Hand geben

Statistische Tests für Tabellen

- Fisher's Exact Test: 2 x 2 Tabellen
 Verteilung der Teststatistik exakt
- Chi-Quadrat Test: m x n Tabellen
 Verteilung der Teststatistik asymptotisch
- Logistische Regression: 2 x m Tabellen; auch Mix aus mehreren kontinuierlichen und kategoriellen erklärenden Variablen möglich Verteilung der Teststatistik asymptotisch Multiple oder einfache?

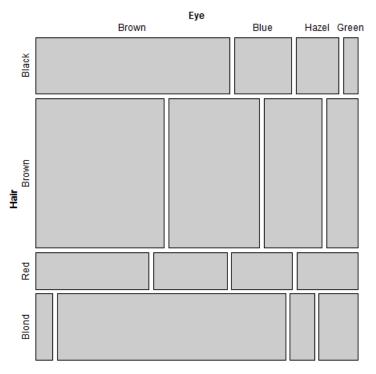
Chi-Quadrat Test: Spalten und Zeilen unabhängig?

Haar- und Augenfarbe (R: ?HairEyeColor)

Hair / Eye	Brown	Blue	Hazel	Green	Total
Black	68	20	15	5	108
Brown	119	84	54	29	286
Red	26	17	14	14	71
Blond	7	94	10	16	127
Total	220	215	93	64	592

- Mögliche Fragen:
 - Visualisierung (v.a. wenn mehr als 2 Kategorien)
 - Abhängigkeit? Wo?

Visualizierung kategorischer Daten: Mosaic Plot



Hair / Eye	Brown	Blue	Hazel	Green	Total
Black	68	20	15	5	108
Brown	119	84	54	29	286
Red	26	17	14	14	71
Blond	7	94	10	16	127

Fläche proportional zu Tabelleneintrag

"observed values"

$O_{ij} = n_{ij}$

Chi-Quadrat Test

	A=1	 A=n	Total
B=1	n_{11}	n_{1n}	n_{1*}
B=m	n_{m1}	n_{mn}	n_{m*}
Total	n_{*1}	n_{*n}	n

H₀: A, B sind unabhängig

$$P(A = i \cap B = j) = P(A = i) * P(B = j) \approx \hat{P}(A = i) * \hat{P}(B = j) = \frac{n_{*i}}{n} * \frac{n_{j*}}{n}$$

Erwartungswert der Zelle falls H_0 stimmt: $E_{ij} = n * \frac{n_{*i}}{n} * \frac{n_{j*}}{n} = \frac{n_{*i} n_{j*}}{n}$

Chi-Quadrat Test

	A=1	 A=n	Total
B=1	n_{11}	n_{1n}	n_{1*}
B=m	n_{m1}	n_{mn}	n_{m*}
Total	n_{*1}	n_{*n}	n

Wie verschieden sind beobachtete und erwartete Werte?

Verbreitet: Pearson Chi-Quadrat Statistik

$$X^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{m} R_{ij}^{2}$$

Falls H_0 stimmt, folgt X^2 einer Chi-Quadrat Verteilung mit (I-1)(J-1) Freiheitsgraden (falls n gross – s. nächste slide).

→ p-Werte

Pearson Residuen

$$R_{ij} = \frac{O_{ij} - E_{ij}}{\sqrt{E_{ij}}}$$

Beitrag jeder Zelle zur Modellabweichung

| 14

	A=1	A=2	Total
B=1	4	8	12
B=2	6	3	9
Total	10	11	21

1.
$$E_{11} = 5.7$$

2.
$$E_{11} = 4$$

3.
$$E_{11} = 0.4$$

4.
$$E_{11} = 0.33$$

1.
$$E_{11} = 5.7$$

2. $E_{11} = 4$
3. $E_{11} = 0.4$
4. $E_{11} = 0.33$
5. $E_{11} = 0.19$

Chi-Quadrat Test: Wann ist Approximation gut?

Faustregel:



- $E_{ii} < 1$ für mind. ein Tabellenfeld \rightarrow ungenügend
- $E_{ii} > 1$ für alle Tabellenfelder i,j \rightarrow gerade noch OK
- $E_{ij} > 5$ für alle Tabellenfelder i,j \rightarrow sehr gut
- Falls Faustregel nicht erfüllt:
 - Kategorien zusammenfassen
 - anderen Test verwenden (z.B. Fisher-Test mit Simulation)

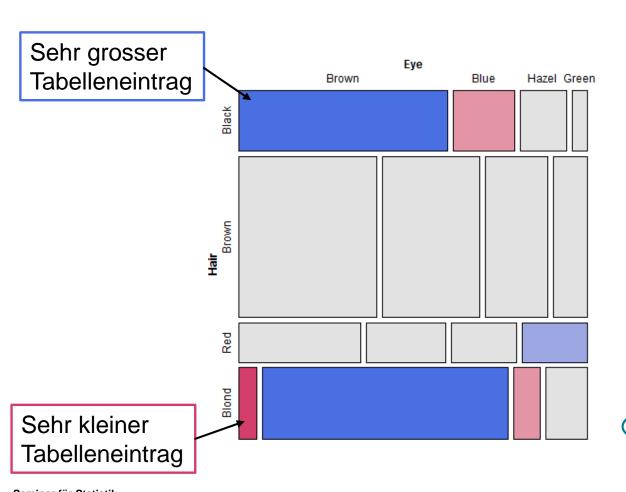
Chi-Quadrat Test in R

> chisq.test(tab)

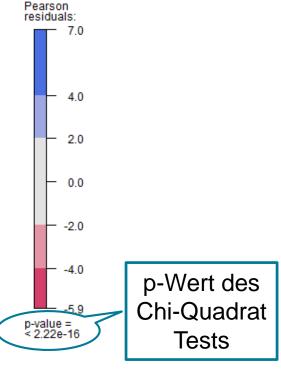
Pearson's Chi-squared test 1-pchisq(q=138.2898,df=9)data: tab

X-squared = 138.2898, df = 9, p-value < 2.2e-16 $\sum_{i=1}^{n} \sum_{j=1}^{m} R_{ij}^{2}$ (4-1)*(4-1)=9

Mosaic plot mit Shading: Integrierter Chi-Quadrat Test



Farbe falls Pearson Residuen ausserhalb [-2, 2]



Statistische Tests für Tabellen

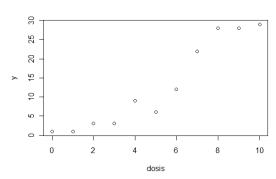
- Fisher's Exact Test: 2 x 2 Tabellen
 Verteilung der Teststatistik exakt
- Chi-Quadrat Test: m x n Tabellen
 Verteilung der Teststatistik asymptotisch
- Logistische Regression: 2 x m Tabellen; auch Mix aus mehreren kontinuierlichen und kategoriellen erklärenden Variablen möglich Verteilung der Teststatistik asymptotisch Multiple oder einfache?

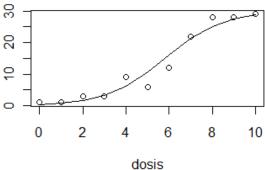
Logistische Regression

• $Y \sim Bin(n, p(x))$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Bsp: Dosis 0, 1, 2, ..., 9, 10; je 30 kranke Tiere
 Y: Anzahl genesener Tiere





```
glm(cbind(y, n-y) \sim dosis, data = dat, family = binomial)
```

Dosis=
$$0 \rightarrow log-odds = \beta_0 = -4.29$$

Wenn man Dosis um eine Einheit erhöht, erhöhen sich die log-odds um $\beta_1 = 0.74$ 95%-VI: 0.74 + 2*0.076

Logistische Regression: Interpretation

• Wenn man Dosis um eine Einheit erhöht, erhöhen sich die log-odds um $\beta_1 = 0.74$ 95%-VI: 0.74 \pm 2*0.076, d.h. [0.588; 0.892]

oder äquivalent

• Wenn man Dosis um eine Einheit erhöht, erhöhen sich die odds um den Faktor $\exp(\beta_1) = 2.10$ 95%-VI: $[\exp(0.588); \exp(0.892)] = [1.80; 2.44]$

Wie gross ist die Genesungswa., wenn die Dosis 10 ist?

Coefficients:

- 1. 0.96
- 2. 0.04
- 3. 0.37
- 4. 0.63

Einfache oder Multiple Regression

(Gilt für alle GLMs; hier am Bsp der linearen Regression)

- Einfache Regression:
 "Totaler Effekt"
 y ~ x → "Wenn sich x um eine Einheit erhöht, erhöht sich y um β₁"
- Multiple Regression
 "Bereinigter Effekt"
 y ~ x1 + x2 → "Wenn sich x1 um eine Einheit erhöht und
 x2 konstant bleibt, erhöht sich y um β₁.
- Kein "richtig" oder "falsch"; eher zwei verschiedene Sichtweisen auf das gleiche Problem

Vorteil von Multipler Regression

Andere Einflüsse werden ausgeschaltet

Bsp: Diskriminierung

- Einfache Regression:
 Zulassung ~ Geschlecht
- Multiple Regression:
 Zulassung ~ Geschlecht + Job

Berühmtes Beispiel: Simpson's Paradox

Simpson's Paradox

(Bsp: Aufgenommene Studenten an der

UC Berkeley in 1973; nur 6 grösste Departemente)

	Angenommen	Abgelehnt
Männer	1198	1493
Frauen	557	1278

Werden Frauen benachteiligt?

Methodenvergleich

- Fisher Test
- Chi-Quadrat Test (mit Mosaikplot)
- (einfache) Logistische Regression

```
> head(dfUCB)
     Admit Gender Dept Freq
1 Admitted
             Male
                         512
             Male
                         313
2 Rejected
3 Admitted Female
                        89
 Rejected Female
                         19
5 Admitted
             Male
                        353
6 Rejected
             Male
                         207
```

```
> fm1 <- glm(Admit ~ Gender, weights = Freq, family = binomial, data = dfUCB)</pre>
> summary(fm1)
call:
alm(formula = Admit ~ Gender, family = binomial, data = dfUCB,
    weights = Freq)
Deviance Residuals:
    Min
              10
                   Median
                                         Max
-28.787 -14.662
                   -1.781
                             15, 244
                                      20.336
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)
              0.22013
                          0.03879
                                    5.675 1.38e-08
GenderFemale 0.61035
                          0.06389
```


Simpson's Paradox (Bsp: Aufgenommene Studenten an der UC Berkeley in 1973)

Dept	Männer		Frauen	
	Bew.	Akz.	Bew.	Akz.
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Simpson's Paradox (Bsp: Aufgenommene Studenten an der UC Berkeley in 1973)

Dept	Männer		Frauen	
	Bew.	Akz.	Bew.	Akz.
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

Simpson's Paradox

(Bsp: Aufgenommene Studenten an der UC Berkeley in 1973)

Dept	Männer		Frauen	
	Bew.	Akz.	Bew.	Akz.
Α	825	62%	108	82%
В	560	63%	25	68%
C	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Nein: Frauen bewerben sich mehr bei "schwierigen" Departments!

Bereinigter Effekt: Logistische Regression

```
glm(formula = Admit ~ Gender + Dept, family = binomial, data = dfUCB,
    weights = Freq)
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.58205	0.06899	-8.436	<2e-16
GenderFemale	-0.09987	0.08085	-1.235	0.217
DeptB	0.04340	0.10984	0.395	0.693
DeptC	1.26260	0.10663	11.841	<2e-16
DeptD	1.29461	0.10582	12.234	<2e-16
DeptE	1.73931	0.12611	13.792	<2e-16
DeptF	3.30648	0.16998	19.452	<2e-16

Der bereinigte Geschlechtereffekt ist nicht signifikant

Seminar für Statistik Markus Kalisch | 29

Zusammenfassung: Statistische Tests für Tabellen

- Fisher's Exact Test: 2 x 2 Tabellen
 Verteilung der Teststatistik exakt
- Chi-Quadrat Test: m x n Tabellen
 Verteilung der Teststatistik asymptotisch
- Logistische Regression: 2 x m Tabellen; auch Mix aus mehreren kontinuierlichen und kategoriellen erklärenden Variablen möglich Verteilung der Teststatistik asymptotisch Multiple oder einfache?