More about Single Factor Experiments

- 1 Parameters in Anova
- 2 Model checking
- 3 Treatment comparison

1 Parameters in Anova

2 Model checking

3 Treatment comparison

Parameter estimation

• Effect Model (1):

$$Y_{ij} = \mu + A_i + \epsilon_{ij}, \qquad \sum J_i A_i = 0$$

Estimation:
$$\widehat{\mu + A_i} = y_i$$
. $\widehat{\mu} = y_.$. $\widehat{A}_i = y_i$. $-y_.$

• Effect Modell (2):

$$Y_{ij} = \mu + A_i + \epsilon_{ij}, \qquad A_1 = 0$$

Estimation:
$$\hat{\mu} = y_1$$
. $\hat{A}_i = y_i - y_1$.

• Mean Model: $Y_{ij} = \mu_i + \epsilon_{ij}$ Estimation: $\hat{\mu}_i = y_i$.

Remarks:

- To interpret parameters correctly you must know which model has been used. Coefficients have different meanings.
- Prediction and residuals are always the same.

Prediction:

$$\hat{y}_{ij} = \begin{cases} \hat{\mu} + \hat{A}_i \\ \hat{\mu}_i \end{cases} = y_i.$$

Residual:

$$r_{ij} = y_{ij} - y_{i.}$$

Anova and Regression

- Analysis of variance models can be written as multiple regression models with indicator variables.
- Analysis of variance models are more intuitiv.
- Parameter estimators $y_{i,j}, y_{i,j}, \dots$ are Least Squares estimators.

Berliner Pfannkuchen

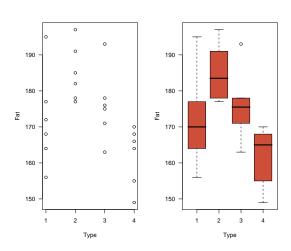
Data

Response: Fat absorption of 24 Berliner [g]

Type of Fat	Fat Absorption						Mean
1	164	172	168	177	156	195	172.0
2	178	191	197	182	185	177	185.0
3	175	193	178	171	163	176	176.0
4	155	166	149	164	170	168	162.0

balanced design: equal replication

Graphical display



R: Anova table

Question: What do these coefficients mean? command model.matrix() can be used to see the design matrix

1 Parameters in Anova

2 Model checking

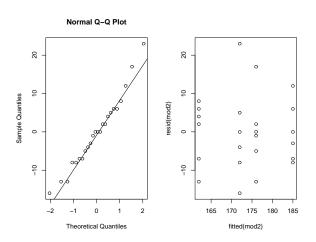
3 Treatment comparison

Model checking

Modell:
$$Y_{ij} = \mu + A_i + \epsilon_{ij}$$
, $\epsilon_{ij} \sim N(0, \sigma^2)$ i.i.d.

- Normal plot of residuals $r_{ij} = y_{ij} y_{i.}$ To detect Outliers. Normal distribution not crucial in randomized experiments. Nonparametric test: Kruskal-Wallis
- Equal variances: Plot r_{ij} vs $y_{i.}$ $\sigma_{min}^2 < \frac{1}{9}\sigma_{max}^2$ (balanced designs), $\log \sqrt{-\tau}$ -transformation, weights
- Independent observations: Plot r_{ij} vs time, order more complex model, analysis

Residual plots



1 Parameters in Anova

2 Model checking

3 Treatment comparison

Treatment differences

F test significant \Longrightarrow There are treatment effects. Which? How large are the effects?

```
Treatment differences estimated by y_i. -y_{i'}. Fat type 2 – Fat type 1: 185 - 172 = 13 Fat type 3 – Fat type 1: 176 - 172 = 4 Fat type 4 – Fat type 1: 162 - 172 = -10
```

Standard error of a treatment difference:
$$\sqrt{\sigma^2(1/J+1/J)} = \sqrt{2\sigma^2/J}$$
, estimated by $\sqrt{2MS_{res}/J}$.

Example:
$$\sqrt{2 \cdot 100.9/6} = 5.799$$

Are Type 2 and 1 significantly different?

t test for
$$H_0: A_2 = A_1$$

$$t = \frac{y_2 - y_1}{\sqrt{2MS_{res}/J}} = \frac{13}{5.799} = 2.242 > 2.086 = t_{0.975,20}, p = 0.036$$

Confidence interval for Type 2 - Type 1:

$$13 \pm 2.086 \cdot 5.799 = 13 \pm \underbrace{12.097}_{LSD} = (0.9, 25.1)$$

Multiple pairwise comparisons

Are all pairs of treatments different? Problem: α_E increases.

- Bonferroni correction for 6 pairwise comparisons: Significance level: $\alpha_T=0.05/6=0.0083$ Critical value: $t_{1-0.05/2\cdot6,20}=2.927$ Difference between Type 2 and 1 not significant.
- Dunnett's method for multiple comparisons with a control group.
- Tukey method for pairwise comparisons: critical values for the distribution of $\max |y_i y_{i'}|$

Tukey method

Reject H_0 : $A_2 = A_1$, if

$$|t|>rac{1}{\sqrt{2}}q_{1-lpha,I,N-I}$$

with $q_{...}$ the quantile of the Studentized Range distribution.

Example: $|t| > \frac{3.958}{\sqrt{2}} = 2.799$.

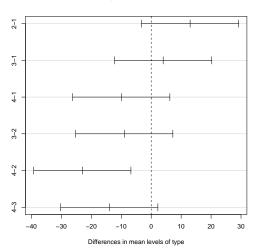
Type 2 and 1 do not differ significantly.

Tukey Confidence interval for Type 2 - Type 1:

$$13 \pm 2.799 \cdot 5.799 = 13 \pm \underbrace{16.23}_{HSD} = (-3.2, 29.2)$$

R: plot(TukeyHSD(mod2, "type"))

95% family-wise confidence level



Complex comparisons

Is there a difference between fat types 1 and 4 vs 2 and 3?

$$H_0: \frac{A_1+A_4}{2} = \frac{A_2+A_3}{2} \Leftrightarrow \frac{A_1}{2} - \frac{A_2}{2} - \frac{A_3}{2} + \frac{A_4}{2} = 0$$

Hypotheses can be written as linear combinations $\sum \lambda_i A_i$.

Question: What about the question before: is there a difference between type 1 and type 2?

$$H_0: A_1 - A_2 = 0$$

Contrasts

Contrast:

$$C = \sum_{i=1}^{I} \lambda_i A_i$$
 with $\sum \lambda_i = 0$

Ex1:
$$C_1 = (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2})$$
 Ex2: $C_2 = (1, -1, 0, 0)$ Ex2?

C can be estimated by

$$\hat{C} = \sum_{i} \lambda_{i} \hat{A}_{i} = \sum_{i} \lambda_{i} (y_{i.} - y_{..})$$

$$= \sum_{i} \lambda_{i} y_{i.} - y_{..} \sum_{i} \lambda_{i} = \sum_{i} \lambda_{i} y_{i.}.$$

Testing of a contrast

Reject $H_0: \sum \lambda_i A_i = 0$, if

$$|t|=|rac{\hat{C}}{\sqrt{\mathit{MS}_{res}\sumrac{\lambda_{i}^{2}}{J_{i}}}}|>t_{0.975,\mathit{N-I}}$$

Equivalently, if

$$F = t^2 = \frac{\hat{C}^2 / \sum \lambda_i^2 / J_i}{MS_{res}} = \frac{SS_C}{MS_{res}} > F_{0.95,1,N-I}$$

 SS_C denotes the sum of squares of the contrast C.

Orthogonal contrasts

- There are I-1 linearly independent contrasts.
- Two contrasts $C_1 = \sum \lambda_i A_i$ and $C_2 = \sum \lambda_i' A_i$ are called orthogonal, if $\sum \lambda_i \lambda_i' = 0$.
- It is always possible to find I-1 orthogonal contrasts.

Partitioning of Treatment Sum of Squares

(only balanced designs)

orthogonal contrasts \longrightarrow uncorrelated estimates \longrightarrow t tests nearly independent

$$SS_C = J\hat{C}^2/\sum \lambda_i^2$$
 sum of squares of the contrast C

If $C_1, C_2, \ldots, C_{l-1}$ are orthogonal contrasts, then

$$SS_{treat} = SS_{C_1} + SS_{C_2} + \cdots + SS_{C_{l-1}}$$

Recommendation: Multiple Comparison

n planned , orthogonal contrasts (n < l - 1)

Bonferroni significance level

 α/n

pairwise comparisons

Tukey method

comparison with a control group

Dunnett's method

complex nonorthogonal or complex unplanned comparisons

Scheffé: critical value
$$\sqrt{(I-1)F_{I-1,N-I,95\%}}$$