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o Effect Model (1):

Yi = p+Ai + €y, D JiAI =0
Estimation: m,- =y. [d=y. /A4,- =Yyi—Vy.
o Effect Modell (2):
Yi = p+ Ai+ €, A1 =0

Estimation: i = y1. /A4; =Y —y.
o Mean Model: Yj = u; + € Estimation: [i; = y;.
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o To interpret parameters correctly you must know which model
has been used. Coefficients have different meanings.

o Prediction and residuals are always the same.

Prediction: R
N 0+ A;
WZ{g "=y

Residual:
fj = Yij — Yi.
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o Analysis of variance models can be written as multiple
regression models with indicator variables.

o Analysis of variance models are more intuitiv.

o Parameter estimators y., y;,... are Least Squares estimators.
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Response: Fat absorption of 24 Berliner [g]

Type of Fat Fat Absorption Mean
1 164 172 168 177 156 195 172.0
2 178 191 197 182 185 177 185.0
3 175 193 178 171 163 176 176.0
4 155 166 149 164 170 168 162.0

balanced design: equal replication
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> mod2=aov(fat~type,data=berliner)
> summary (mod2)

Df Sum Sq Mean Sq F value Pr(>F)
type 3 1636.5 545.5 5.4063 0.0069%%
Residuals 20 2018.0 100.9

> coef (mod2)
(Intercept)  type2 type3 type4d
172 13 4 -10

Question: What do these coefficients mean?
command model.matrix() can be used to see the design matrix
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Model che

Modell: Yi=p+ A +e€j, €~ N(O,Uz) i.i.d.

o Normal plot of residuals rjj = yj; — yi. To detect Outliers.
Normal distribution not crucial in randomized experiments.
Nonparametric test: Kruskal-Wallis

o Equal variances: Plot rjj vs y;.
02 < 502, (balanced designs), log-,/ -transformation,

weights

o Independent observations: Plot rj; vs time, order
more complex model, analysis
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Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles
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Treatme

F test significant = There are treatment effects.
Which? How large are the effects?

Treatment differences estimated by y; — y;r.
Fat type 2 — Fat type 1: 185 —172 = 13
Fat type 3 — Fat type 1: 176 —172= 4
Fat type 4 — Fat type 1: 162 — 172 =—10

Standard error of a treatment difference:

\/‘72(1/J +1/J) = \/202/J, estimated by \/2MS,es/J.
Example: 1/2-100.9/6 = 5.799
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t test for Hp : A> = Ay

y2o—y1. 13

V2MS,es/J  5.799

t =

= 2.242 > 2.086 = tp.975,20, p = 0.036

Confidence interval for Type 2 - Type 1:

13+2.086-5.799 = 13 £ 12.097 = (0.9, 25.1)
LSD
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Multiple pairwi

Are all pairs of treatments different? Problem: ag increases.

o Bonferroni correction for 6 pairwise comparisons:
Significance level: a7 = 0.05/6 = 0.0083
Critical value: t1-0.05/2:6,20 = 2.927
Difference between Type 2 and 1 not significant.

o Dunnett's method for multiple comparisons with a control
group.

o Tukey method for pairwise comparisons:
critical values for the distribution of max|y; — yi |
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Reject Hp : Ap = Ay, if

1
t| > —=q1— _
] \/qu a,,N—1
with g the quantile of the Studentized Range distribution.

Example: [t| > % = 2.799.
Type 2 and 1 do not differ significantly.

Tukey Confidence interval for Type 2 - Type 1:

13+2.799-5.799 = 13 + 16.23 = (—3.2,29.2)
HSD
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Is there a difference between fat types 1 and 4 vs 2 and 37

_A1+A4_A2+A3®A1 Ar A3 Ay

H, —
0- Ty T T Ty Ty T2 T2

Hypotheses can be written as linear combinations Y~ AjA;.

Question: What about the question before: is there a difference
between type 1 and type 27

Ho:Al—A2=O
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Contrast:

1
C=> XA with Y Ai=0
i=1

Exl: G = (3,-3,-3.3) Ex2 & =(1,-1,0,0)
Ex27

C can be estimated by

C = ZA,-A,- = ZAi(Yi. -v.)
= ZA,-y,-, —y. Z)\; = Z)\iyi.-
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Reject Hp : > NiA; =0, if

A

C
|t = |—)\2 | > to.975,N-1
\| MSres 32- 5
Equivalently,if
C2/S°02/J;  SS¢
F=t= L= > F -
MS . MS e 0.95,1,N—/

S5¢ denotes the sum of squares of the contrast C.
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o There are [ — 1 linearly independent contrasts.

o Two contrasts C; = Y A\jA; and G = Y M A; are called
orthogonal, if Y A\jA; =0

o It is always possible to find / — 1 orthogonal contrasts.
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(only balanced designs)

orthogonal contrasts — uncorrelated estimates —
t tests nearly independent

SS¢c = J&z/ 5> A? sum of squares of the contrast C
If C1,C,,. .., Cj_1 are orthogonal contrasts, then

SStreat = SS¢, + SS¢, + -+ SS¢,_,
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n planned , orthogonal contrasts
(n<1-1)

pairwise comparisons
comparison with a control group

complex nonorthogonal or complex
unplanned comparisons

Bonferroni significance level
a/n

Tukey method
Dunnett’s method

Scheffé: critical value
\/(/ — 1)F1,n—1,05%
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