Single Factor experiments

- Topic:
 - Comparison of more than 2 groups
 - Analysis of Variance
 - F test
- Reason: Multiple t tests won't do!
- Learning Aims:
 - Understand model parametrization
 - Carry out an anova

Comparison of more than 2 groups
Analysis of Variance
F test

1 Comparison of more than 2 groups

2 Analysis of Variance

3 F test

1 Comparison of more than 2 groups

2 Analysis of Variance

3 F test

Potatoe scab

- widespread disease
- causes economic loss
- known factors: variety, soil condition

Experiment with different treatments

- Compare 7 treatments for effectiveness in reducing scab
- Field with 32 plots, 100 potatoes are randomly sampled from each plot
- For each potatoe the percentage of the surface area affected was recorded. Response variable is the average of the 100 percentages.

Field plan and data

2	1	6	4	6	7	5	3
9	12	18	10	24	17	30	16
1	5	4	3	5	1	1	6
10	7	4	10	21	24	29	12
2	7	3	1	3	7	2	4
9	7	18	30	18	16	16	4
5	1	7	6	1	4	1	2
9	18	17	19	32	5	26	4

1-Factor Design

Plots, subjects

Randomisation

Group 1	Group 2	 Group 7
×	×	×
×	×	×
×	×	 ×
×	×	×
×	×	×

Complete Randomisation

- number the plots 1, ..., 32.
- 2 construct a vector with 8 replicates of 1 and 4 replicates of 2 to 7.
- 3 choose a random permutation and apply it to the vector in b).

```
in R:
```

- > treatment=factor(c(rep(1,8),rep(2:7,each=4)))
- > treatment
- [1] 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7
- > sample(treatment)
- [1] 6 4 3 4 7 3 1 2 3 5 5 6 1 7 1 1 2 1 3 2 1 5 7 4 2 1 7 6 6 1

Exploratory data analysis

Group)	/				\bar{y}
1	12	10	24	29	30	18	32	26	22.625
2	9	9	16	4					9.5
3	16	10	18	18					15.5
4	10	4	4	5					5.75
5	30	7	21	9					16.75
6	18	24	12	19					18.25
7	17	7	16	17					14.25

Question: How to plot the data?

Histogram? Bar chart? Boxplot? Pie chart? Scatter plot?

Graphical display

Why t tests don't work?

```
Group 1 - Group 2 :
                              H_0: \mu_1 = \mu_2
Group 1 - Group 3 : H_0: \mu_1 = \mu_3
Group 1 - Group 4 : H_0: \mu_1 = \mu_4
Group 1 - Group 5 : H_0: \mu_1 = \mu_5
Group 1 - Group 6 : H_0: \mu_1 = \mu_6
Group 1 - Group 7 : H_0: \mu_1 = \mu_7
\alpha = 5\%, P( Test not significant |H_0\rangle = 95\%
7 groups, 21 independent tests:
P(\text{ none of the tests sign. } | H_0) = 0.95^{21} = 0.34
P( at least one test sign. |H_0\rangle = 0.66
                                                   1 - (1 - \alpha)^n
```

more realistic: 0.42

Bonferroni correction

Choose α_T such that

$$1 - (1 - \alpha_T)^n = \alpha_E = 5\%$$

$$(\alpha_T = \alpha \text{ "testwise"}, \alpha_E = \alpha \text{ "experimentwise"})$$

Since $1-(1-\frac{\alpha}{n})^n\approx \alpha$, the significance level for a single test has to be divided by the number of tests.

Overcorrection, not very efficient.

1 Comparison of more than 2 groups

2 Analysis of Variance

3 F test

Terminology

Factor: categorical, explanatory variable

Level: value of a factor

Ex 1: Factor= soil treatment, 7 levels 1-7.

⇒ One-way analysis of variance

Ex 2: 3 varieties with 4 quantities of fertilizer

⇒ Two-way analysis of variance

- Treatment: combination of factor levels
- Plot, experimental unit: smallest unit to which a treatment can be applied

Ex: feeding (chicken, chicken-houses), dental medicine (families, people, teeth)

What is analysis of variance?

- Comparison of more than 2 groups
- for more complex designs
- global F test

Idea:

Comparison of components

Anova model

Model:

$$Y_{ij} = \mu + A_i + \epsilon_{ij}, \quad i = 1, \ldots, I; j = 1, \ldots, J_i$$

```
Y_{ij}= response of the jth replicate in group i \mu= overall mean A_i= ith treatment effect \epsilon_{ij}= random error, \mathcal{N}(0,\sigma^2) iid.
```

Illustration of the model

Decomposition of the deviation of a response from the overall mean

$$y_{ij}-y_{..}= \underbrace{y_{i.}-y_{..}}_{ ext{deviation of}} + \underbrace{y_{ij}-y_{i.}}_{ ext{deviation from}}$$

$$y_{i.} = \frac{1}{J_i} \sum_j y_{ij}$$
 mean of group i , $y_{..} = \frac{1}{N} \sum_i \sum_j y_{ij}$ overall mean, $N = \sum J_i$.

Analysis of variance identity

$$\sum_{i} \sum_{j} (y_{ij} - y_{..})^{2} = \sum_{i} \sum_{j} (y_{i.} - y_{..})^{2} + \sum_{i} \sum_{j} (y_{ij} - y_{i.})^{2}$$
total variability variability between groups

total sum = treatment sum + residual sum of squares of squares
$$SS_{tot} = SS_{treat} + SS_{res}$$

Total and Residual mean squares

Total mean square:

$$MS_{tot} = SS_{tot}/(N-1)$$

Residual mean square:

$$MS_{res} = SS_{res}/(N-I)$$

$$s_i^2 = \frac{\sum_j (y_{ij} - y_{i.})^2}{J_i - 1}$$
 is an estimate of σ^2

Pooled estimate of σ^2 :

$$\frac{\sum_{i}(J_{i}-1)S_{i}^{2}}{\sum_{i}(J_{i}-1)} = \frac{SS_{res}}{N-I} = MS_{res}$$

$$MS_{res} = \hat{\sigma}^{2} = \widehat{Var(Y_{ij})}, \quad E(MS_{res}) = \sigma^{2}$$

Treatment mean square

• Treatment mean square:

$$MS_{treat} = SS_{treat}/(I-1)$$
 $E(MS_{treat}) = \sigma^2 + \sum J_i A_i^2/(I-1)$

$$df_{tot} = df_{treat} + df_{res}$$

 $N-1 = I-1 + N-I$

1 Comparison of more than 2 groups

2 Analysis of Variance

3 F test

F test

$$H_0$$
: all $A_i = 0$

 H_A : at least one $A_i \neq 0$

Since $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$, $F = \frac{MS_{treat}}{MS_{res}}$ has an F distribution with I-1 and N-I degrees of freedom under H_0 .

one-sided test: reject H_0 if $F > F_{95\%,I-1,N-I}$

Anova table

Source	SS	df	MS=SS/df	F	p
Treatment	SS_{treat}	<i>l</i> – 1	MS_{treat}	MS_{treat}/MS_{res}	
Residual	SS_{res}	N-I	MS_{res}		
Total	SS_{tot}	N-1			

in R:

F test is significant, there are significant treatment differences.