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Solution to Series 2

1. a) > # Load data

> load("solar.radiation.rda")

> # Ignore corrupted data points

> sol.rad[sol.rad==99999] <- NA

> sol.rad <- na.omit(sol.rad)

> # Scatter plot

> plot(sol.rad)

> # Running Mean

> lines(ksmooth(sol.rad$jahr, sol.rad$rad, kernel="box", bandwidth=10), lwd=1.5,

col="red")

> # Gaussian Kernel Smoother

> lines(ksmooth(sol.rad$jahr, sol.rad$rad, kernel="normal", bandwidth=10), lty=2,

lwd=1.5, col="blue")

> # LOESS

> fit <- loess(rad~jahr, sol.rad)

> x <- seq(1964, 2002, length.out=100)

> y <- predict(fit, newdata=data.frame(jahr=x))

> lines(x, y, lty=4, lwd=1.5, col="green")

> # Add legend

> legend("topright", lwd=1.5, lty=c(1,2,4), col=c("red", "blue", "green"),

legend=c("Running Mean", "Gauss Kernel", "LOESS"))
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b) Visually, it seems there is a slight decrease in both clusters of the data (60s/70s and after 1980).
However, it is not possible to give quantitative evidence to this claim just by using non-parametric
smoothing.

c) > # Plot scatter plot and regression line

> plot(sol.rad)

> fit.lm <- lm(rad~jahr, sol.rad)

> lines(sol.rad$jahr, fit.lm$fitted.values)

> # Print fit summary

> summary(fit.lm)



2

Call:

lm(formula = rad ~ jahr, data = sol.rad)

Residuals:

Min 1Q Median 3Q Max

-10.9251 -5.5769 -0.3553 3.2839 18.8724

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 603.21788 196.46192 3.07 0.0051 **

jahr -0.24051 0.09898 -2.43 0.0226 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.608 on 25 degrees of freedom

Multiple R-squared: 0.191, Adjusted R-squared: 0.1587

F-statistic: 5.904 on 1 and 25 DF, p-value: 0.02262
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Assuming all the conditions of the OLS regression are correct here, there is considerable quantitative
evidence for the claim. The slope parameter indicates a negative trend and is significant on the 5%
level.

2. a) > # Load data and create scatter plot

> load("my.mtcars.rda")

> plot(l.100km ~ hp, my.mtcars)

> # Fit linear regression and plot

> fit <- lm(l.100km~ hp, my.mtcars)

> lines(my.mtcars$hp, fit$fitted.values)

> # Print fit summary

> summary(fit)

Call:

lm(formula = l.100km ~ hp, data = my.mtcars)

Residuals:

Min 1Q Median 3Q Max

-5.1694 -1.3342 -0.1650 0.5701 7.3550

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.44908 1.07380 6.006 1.37e-06 ***

hp 0.04299 0.00665 6.464 3.84e-07 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.539 on 30 degrees of freedom

Multiple R-squared: 0.5821, Adjusted R-squared: 0.5682

F-statistic: 41.79 on 1 and 30 DF, p-value: 3.839e-07

●●
●

●

●●

●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

50 100 150 200 250 300

10
15

20

hp

l.1
00

km

b) The residual standard error is 2.54 (from summary output).

c) For the first question we can just use the predict function:

> # Predict

> predicted.consumption <- predict(fit, newdata=data.frame(hp=100))

> # Print

> names(predicted.consumption) <- NULL

> print(predicted.consumption)

[1] 10.74799

So the predicted fuel consumption is 10.75.

For the second part we need to invert the model equation and plug in the values from the summary
output ourselves.

> # Store regression coefficients

> beta0 <- fit$coefficients[1]

> beta1 <- fit$coefficients[2]

> # Calculate predicted value

> predicted.hp <- (15 - beta0)/beta1

> # Print

> names(predicted.hp) <- NULL

> print(predicted.hp)

[1] 198.9092

So the predicted engine power is 198.91.

d) We can just calculate the confidence interval for the slope parameter β1 and see whether it includes
the value 0.05.

> confint(fit, "hp")

2.5 % 97.5 %

hp 0.02940723 0.05657087

It does include 0.05, so the claim cannot be disproved by the data.

e) > # Draw scatter plot and regression line

> plot(l.100km ~ hp, my.mtcars)

> lines(my.mtcars$hp, fit$fitted.values)

> # Grid with x-values

> newdata <- data.frame(hp=0:400)
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> # Generate and plot confidence interval

> ci <- predict(fit, newdata=newdata, interval="confidence")

> lines(newdata$hp, ci[,2], col="red", lty=2)

> lines(newdata$hp, ci[,3], col="red", lty=2)

> # Generate and plot confidence interval

> pi <- predict(fit, newdata=newdata, interval="prediction")

> lines(newdata$hp, pi[,2], col="blue", lty=4)

> lines(newdata$hp, pi[,3], col="blue", lty=4)

> legend("topleft", lty=c(2, 4), col=c("red", "blue"), legend=c("C.I.", "P.I."))
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f) We first check for constant variance by plotting the residuals against fitted values (Tukey-Anscombe
plot). In this plot we can also see whether the zero expectation assumption is valid.

> plot(fit$fitted.values, fit$residuals)

> abline(0, 0, lty=2) # Dashed line at zero
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The first thing to note is that there seem to be two outliers with very large residuals. Disregarding
these, the mean of the residuals is negative, so the zero expectation assumption seems to be violated.
The constant variance assumption seems to be fine (without the outliers).

We now look at a QQ-Plot to check for normality or the errors.

> qqnorm(fit$residuals)
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Again, we see the two outliers, which heavily distort the QQ plot. In summary, the model does not
seem appropriate for the data. To the very least, the zero expectation and normality assumptions are
violated.

3. a) The scatterplot shows a curved relation.

b) Nt is the number of surviving bacteria upt to the time point t, hence N0 is the starting population.

In each interval only a constant proportion b of bacteria survives, where 0 < b < 1.

Therefore it follows that
at time point t = 1 N1 = b ·N0 bacteria
at time point t = 2 N2 = b ·N1 = b2 ·N0 bacteria
...

...
at time point t = i Ni = b ·Ni−1 = . . . = bi ·N0 bacteria

Ni = bi ·N0 ⇐⇒ log(Ni) = i · log(b) + log(N0)

⇐⇒ log(Ni)︸ ︷︷ ︸
y

= log(N0)︸ ︷︷ ︸
β0

+ log(b)︸ ︷︷ ︸
β1

· i︸︷︷︸
x

The scatterplot of log(Nt) versus t exhibits a tolerably linear relation.

c) Regression equation ŷ = 5.973− 0.218x

Starting population: N̂0 = e5.97316 = 393

Percentaged decrease: 1− b̂ = 1− e−0.218 = 0.20


