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What is Regression?
The answer to an everyday question: 
How does a target variable of special interest depend on
several other (explanatory) factors or causes. 

Examples:
•  growth of plants, depends on fertilizer, soil quality, …
•  apartment rents, depends on size, location, furnishment, … 
•  car insurance premium, depends on age, sex, nationality, …

Regression:
•  quantitatively describes relation between predictors and target
•  high importance, most widely used statistical methodology



5Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2013 – Week 02

Regression Mathematics
 See blackboard...
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What is Regression?
Example: Fresh Water Tank on                                Planes

• Earlier: it was impossible to predict the amount of fresh water 
needed, the tank was always filled to 100% at Zurich airport. 

• Goal: Minimizing the amount of fresh water that is carried. 
This lowers the weight, and thus fuel consumption and cost. 

• Task: Modelling the relation between fresh water consumption 
and # of passengers, flight duration, daytime, destination, …
Furthermore, quantifying what is needed as a reserve.

• Method: Multiple linear regression model
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Goals with Linear Modeling
To understand the relation between 

•  Does the fertilizer positively affect plant growth?
•  Regression is a tool to give an answer on this
•  However, showing causality is a different matter

Target value prediction for new configurations

•  What are the expected claims for auto insurance?
•  Regression analysis formalizes “prior experience”
•  It also provides an idea on the uncertainty of the prediction



8Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2013 – Week 02

Regression: Goals
1) Understanding the relation between and

The aim is to pin down which of the predictors have influence on 
the response variable, as well as to quantify the strength of this
relation. There is a battery of statistics and tests that address
these questions. 

2) Prediction

The regression equation can be used for predicting the expected
response value for an arbitrary predictor configuration . 
We will not only generate point predictions, but can also attribute
a prediction interval that quantifies the involved uncertainty.

y 1,..., px x

1,..., px xŷ
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Simple Regression
In this course, we first discuss simple regression, where there is 
only one single predictor variable. Later, we will extend this to 
multiple regression, where many predictors can be present.

Advantages of discussing simple regression:

•   Visualization of data and fit is possible
•   Corresponds to estimating a straight line or curve
•   Is also mathematically simpler and more intuitive

We start out with smoothing, i.e. fitting non-parametric curves. 
Then, we will proceed with discussing linear models, i.e. the 
classical parametric regression approach.
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Example: Airline Passengers
Each month, Zurich Airport publishes the number of air traffic
movements and airline passengers. We study their relation.  
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Example: Airline Passengers

Month Pax ATM

2010-12 1‘730‘629 22‘666

2010-11 1‘772‘821 22‘579

2010-10 2‘238‘314 24‘234

2010-09 2‘139‘404 24‘172

2010-08 2‘230‘150 24‘377

... ... ...
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Flughafen Zürich: Pax vs. ATM
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Smoothing
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Flughafen Zürich: Pax vs. ATMWe may use an arbitrary
smooth function for
capturing the relation bet-
ween Pax and ATM. 

• It should fit well, but 
not follow the data too
closely.

• The question is how
the line/function are
obtained.

( )f 
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Linear Modeling
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Flughafen Zürich: Pax vs. ATMA straight line represents
the systematic relation
between Pax and ATM.

• Only appropriate if the
true relation is indeed
a straight line

• The question is how
the line/function are
obtained.
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Smoothing vs. Linear Modeling
Advantages and disadvantages of smoothing:
+ Flexibility
+ No assumptions are made
- Functional form remains unknown
- Danger of overfitting

Advantages and disadvantages of linear modelling:
+ Formal inference on the relation is possible
+ Better efficiency, i.e. less data required
- Only reasonable if the relation is linear
- Might falsely imply causality
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Smoothing
Our goal is visualizing the relation between the / response
variable Pax and the / predictor variable ATM.

 we are not after a functional description of

Since there is no parametric function that describes the response
vs. predictor relation, smoothing is also termed non-parametric
regression analysis.

Method/Idea: "Running Mean"
- take a window of x-values
- compute the mean of the y-values within the window
- this is an estimate for the function value at the window center

( )f 

Y
x
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Running Mean: Example
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Running Mean: Beispiel
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Running Mean: Mathematics
RunningMean(x) = Mean of y-values over a window with

width around . 

The estimate for , denoted as , is defined as follows:

, 

The weights are defined as , 
and is the window width.  
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Running Mean: R-Implementation
• As an introductory exercise, it is instructive to code a function

that computes and visualizes the running mean.
Arguments: xx=   x values

yy=   y values
width= window width
steps= # of points computed

• Alternatively, one can simply use function ksmooth(). The 
window size can be adjusted by argument bandwidth=. 
Some other settings can be made, especially with respect
to evaluation.

We will now study the running mean fit...
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Running Mean: R-Implementation
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Running Mean: Unique Data
> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(fit, col="red", lwd=2)
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Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, x.points=ATM
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Running Mean: Unique Data
> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(fit, col="red", lwd=2)
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Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, n.points=1000
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Running Mean: Drawbacks
• The finer grained the evaluation points are, the less smooth 

the fitted function turns out to be. This is unwanted. 
Reason: datapoints are "lost" abruptly.

• For large window width, we loose a lot of information on the
boundaries. For small windows however, we may have too
few points withing the window, and thus instability. 

 There are much better smoothing algorithms!

We will introduce:
a) a Gaussian Kernel Smoother, and
b) the robust LOESS-Smoother
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Gaussian Kernel Smoother
KernelSmoother(x) = Gaussian bell curve weighted average

of y-values around x. 

The estimate for , denoted as , is defined as:

, 

The weights are defined as:                                    , i.e.
the window is infinitely wide,
but distant observation obtain little weight.
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Gaussian Kernel Smoother: Idea

2 4 6 8 10

5
10

15
20

25

5.55
6.31

7.68

11.07

13.62

15.59

17.96 18.18

21.44 21.83



25Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2013 – Week 02

Gaussian Kernel Smoother: Unique Data
> ks.gauss <- ksmooth(ATM, Pax, kernel="normal", band=1000)
> plot(ATM, Pax, xlab="ATM", ylab="Pax", pch=20)
> lines(ks.gauss, col="darkgreen", lwd=1.5)
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Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, n.points=1000
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LOESS-Smoother
The LOESS-Smoother is better, more flexible and more robust 
than the Gaussian Kernel Smoother. It should be prefered! 

It works as follows:

1) Choose a window of fixed width

2) For this window, a straight line (or a parabola) is fitted to 
the datapoints within, using a robust fitting method. 

3) Predicted value at window center := fitted value

4) Slide the window over the entire x-range
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LOESS-Smoother: Idea
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LOESS-Smoother: R-Implementation
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LOESS-Smoother: Unique Data
> smoo <- loess.smooth(unique2010$ATM, unique2010$Pax)
> plot(Pax ~ ATM, data=unique2010, main=...)
> lines(smoo, col="blue")
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Loess-Glätter: Default-Einstellung



30Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2013 – Week 04

Linear Modeling
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Flughafen Zürich: Pax vs. ATMA straight line represents
the systematic relation
between Pax and ATM.

• Only appropriate if the
true relation is indeed
a straight line

• The question is how
the line/function are
obtained.
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Simple Linear Regression
The more air traffic movements, the more passengers there are. 
The relation seems to be linear, which is of course also the
mathematically most simple way of describing the relation.

, resp. 

Name/meaning of the two "Intercept"
parameters in the equation:                  "Slope"

Fitting a straight line into a 2-dimensional scatter plot is known
as simple linear regression. This is because: 
•   there is just one single predictor variable ("simple").
•   the relation is linear in the parameters ("linear").

1( ) of x x  

0 
1 

0 1Pax ATM   
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Model, Data & Random Errors
No we are bringing the data into play. The regression line will not 
run through all the data points. Thus, there are random errors: 

,  for all 

Meaning of variables/parameters:
is the response variable (Pax) of observation .
is the predictor variable (ATM) of observation .
are the regression coefficients. They are unknown
previously, and need to be estimated from the data.
is the residual or error, i.e. the random difference bet-
ween observation and regression line.

0 1i i iy x E   
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Least Squares Fitting
 http://sambaker.com/courses/J716/demos/LeastSquares/LeastSquaresDemo.html

We need to fit a straight
line that fits the data well.

Many possible solutions
exist, some are good, 
some are worse.

Our paradigm is to fit the
line such that the squared
errors are minimal.
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Least Squares: Mathematics
The paradigm in verbatim...

Given a set of data points , the goal is to fit the
regression line such that the sum of squared differences
between observed value and regression line is minimal. 
The function

measures, how well the regression line, defined by , fits
the data. The goal is to minimize this "quality function".

Solution:  see next slide...
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Solution Idea: Partial Derivatives
• We are taking partial derivatives on the function with

respect to both arguments and . As we are after the
minimum of the function, we set them to zero:

and

• This results in a linear equation system, which (here) has two
unknowns , but also two equations. These are also 
known under the name normal equations. 

• The solution for can be written explicitly as a function of
the data pairs , see next slide...
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Least Squares: Solution
According to the least squares paradigm, the best fitting
regression line is, i.e. the optimal coefficients are: 

and

• For a given set of data points , we can determine
the solution with a pocket calculator (...or better, with R). 

• The solution for our example Pax vs. ATM:
obtained from

> lm(Pax ~ ATM, data=uni...)
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Fitted Values
The estimated parameters can be used for determining
the fitted values . Please note that mathematically, this is a 
conditional expected value::

In R, the fitted values are obtained as follows:

> fit <- lm(Pax ~ ATM, data=unique2010)
> fitted(fit)

1       2       3       4       5 
1654841 1808312 2165068 2156465 2184911 

6       7       8       9     ... 
2250545 2108731 2062107 1493184  ... 

0 1
ˆ ˆ, 

ŷ

0 1
ˆ ˆˆ [ | ]y E y x x   



19000 20000 21000 22000 23000 24000 2500014
00

00
0

18
00

00
0

22
00

00
0

ATM

Pa
x

Zurich Airport Data: Pax vs. ATM
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Drawing the Regression Line
> plot(Pax ~ ATM, data=unique2010, pch=20)
> title("Zurich Airport Data: Pax vs. ATM")
> abline(fit, col="red", lwd=2)

0 1
ˆ ˆŷ x  
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Is This a Good Model for Predicting the
Pax Number from the ATM?
a) Beyond the range of observed data
Unknown, but most likely not...

b) Within the range of observed data
Yes, under the following conditions:
- the relation is in truth a straight line, i.e. 
- the scatter of the errors is constant, i.e. 
- the data are uncorrelated (from a representative sample)
- the errors are approximately normally distributed

 Fodder for thougt: 9/11, SARS, Eyjafjallajökull...?
Marcel Dettling, Zurich University of Applied Sciences

[ ] 0iE E 
2( )iVar E 
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Model Diagnostics
For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:

and                       can be reviewed by:[ ] 0iE E  2( )iVar E 
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Model Diagnostics
For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
Gaussian distribution can be reviewed by:

We will revisit model diagnostics
again later in this course, where
it will be discussed more deeply.

"Residuals vs. Fitted" and the
"Normal Plot" will always stay at
the heart of model diagnostics.
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Why Least Squares?
History...

Within a few years (1801, 1805), the method was developed
independently by Gauss and Legendre. Both were after solving
applied problems in astronomy...
Source:  http://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate

Carl Friedrich Gauss

Marcel Dettling, Zurich University of Applied Sciences

Adrien-Marie Legendre
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Why Least Squares?
Mathematics...

• Least Squares is simple in the sense that the solution is
known in closed form as a function of . 

• The line runs through the center of gravity

• The sum of residuals adds up to zero: 

• Some deeper mathematical optimality can be shown when
analyzing the large sample properties of the estimates
This is especially true under the assumption of normally
distributed errors .  

Marcel Dettling, Zurich University of Applied Sciences
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Gauss-Markov-Theorem
A mathematical optimality result for the Least Squares line

It only holds if the following conditions are met:

- the relation is in truth a straight line, i.e. 
- the scatter of the errors is constant, i.e. 
- the errors are uncorrelated, i.e. 

Not yet required:
- the errors are normally distributed:

Gauss-Markov-Theorem:
- Least Squares yields the best linear unbiased estimates

[ ] 0iE E 
2( )iVar E 

( , ) 0,i jCov E E if i j 

2~ (0, )i EE N 
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Properties of the Least Square Estimates
Under the conditions above, the estimates are unbiased: 

and

The variances of the estimates are as follows:

and

Precise estimates are obtained with:
- a large number of observations
- a good scatter in the predictor
- an informative/useful predictor, making small
- (an error distribution which is approximately Gaussian) 
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Estimating the Error Variance
Besides the regression coefficients, we also need to estimate 
the error variance. It is a necessary ingredient for all tests and 
confidence intervals that will be discussed shortly. 

The estimate is based on the residual sum of squares (RSS):

In R, the regression summary provides the estimate for the
error’s standard deviation as Residual standard error:

> summary(fit)
...
Residual standard error: 59700 on 22 degrees of freedom
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Benefits of Linear Regression
•   Inference on the relation between and

The goal is to understand if and how strongly the response
variable depends on the predictor. There are performance
indicators as well as statistical tests adressing the issue.

•   Prediction of (future) observations

The regression line/equation can be employed to predict
the PAX number for any given ATM value.

However, this mostly will not work well for extrapolation!

0 1
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: The Coefficient of Determination 
The coefficient of determination is also known as multiple
R-squared. It tells which portion of the total variation is
accounted for by the regression line.

2R
2R
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Computation of
is the portion of the total variation that is explained through

regression. It is determined as one minus the quotient of the
yellow arrow divided by the blue arrow.

The closer to 1 the value is, the tighter the datapoints are
packed around the regression line. However, there are no
formal criteria which value needs to be met such that
the regression can be said to be useful/valid. 
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Confidence Interval for the Slope
A 95%-CI for the slope tells which values (besides
the point estimate ) are plausible, too. The uncertainty
is due to estimation/sampling effects. 

95%-CI for :                           , resp.

In R: > fit <- lm(Pax ~ ATM, data=unique2010)
> confint(fit, "ATM")

2.5 %  97.5 %
ATM 124.4983 153.025
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Testing the Slope
There is a statistical hypothesis test which can be used to check 
whether the slope is significantly different from zero, or any other
arbitrary value . The null hypothesis is:

, resp. 

One usually tests two-sided on the 95%-level. The alternative is:

, resp.

As a test statistic, we use: 

, resp.                 , , both have a       distribution. 
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Reading R-Output
> summary(lm(Pax ~ ATM, data=dat))

Call: lm(formula = Pax ~ ATM, data = dat)

Residuals:    Min      1Q  Median      3Q     Max 
-104188  -40885    2099   48588   89154 

Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 ***
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 ***

---

Residual standard error: 59700 on 22 degrees of freedom
Multiple R-squared: 0.9487, Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF,  p-value: 1.110e-15 

 Will be explained in detail on the blackboard!
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Testing the Slope
Practical Example:

Use the Pax vs. ATM data and perform a statistical test for the
null hypothesis . The information from the summary
on slide 25 can be used as a basis. Then, also answer: 

a) Explain in colloquial language what was just tested. What is
the benefit of this test? What claims could motivate the test?

b) How does the testing result relate with the 95%-CI that we
computed on slide 23? Would we be able to tell the test
results from the CI alone? 

See blackboard for the answers

1

0 1: 150H  
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Testing the Intercept
An analogous test can be done for the intercept.

• No matter what the test result will be, the intercept should
generally not be omitted from the regression model.

• The presence of the intercept protects against possible
non-linearities and calibration errors of measurement
devices. If it is kicked out of the model, the results are
generally worse.

• If theory dictates that there should not be an intercept but
it is still significant, take this as evidence that the linear 
relation does not hold when extrapolating to .

0

0x 
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Prediction
Using the regression line, we can predict the    -value for any 
desired    -value. The result is the expectation for      given   .

a.k.a. "fitted value"

Example: With 24’000 air traffic movements, we expect

Passengers

Be careful:

At best, interpolation within the range of observed    -values is 
trustworthy. Extrapolation with ATM values such as 50’000, 
5'000 or even 0 usually produces completely useless results.

0 1
ˆ ˆˆ[ | ]E y x y x   

1'197'682 24 '000 138.8 2'133'518   
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Prediction with R
We can use the regression fit object for prediction. The 
syntax for obtaining the fitted value(s) is as follows:

> fit <- lm(Pax ~ ATM, data=unique2010)
> dat <- data.frame(ATM=c(24000)) 
> predict(fit, newdata=dat)
1 2132598 

The    -values need to be provided in a data frame, where the
variable/column name is identical to the predictor name.

Then, the predict() procedure is invoked with the regression
fit and the new -values as arguments. 

x

x
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Confidence Interval for
We just computed the fitted value , i.e. the expected
number of passengers for 24'000 ATMs. This is not a deter-
ministic value, but an estimate that is subject to variability.

A 95%-CI for the fitted value at position is given by: 

In R: > predict(fit, newdata=dat, interval="confidence")
fit     lwr upr

1 2132598 2095450 2169746

2
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Prediction Interval for
The confidence interval for tells about the variabilty of
the fitted value. It does not account for the scatter of the data
points around the regression line and thus does not define a 
region where we have to expect the observed value. A 95% 
prediction interval at position is given by:

In R: > predict(fit,newdata=dat,interval="prediction")
fit     lwr upr

1 2132598 2003343 2261853
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Confidence and Prediction Interval
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Confidence and Prediction Interval
Note:

Visualizing the confidence and prediction intervals in R is
not straightforward, but requires some tedious handwork. 

R-Hints:

dat <- data.frame(ATM=seq(...,..., length=200))
pred <- predict(fit, newdata=dat, interval=...)
plot(..., ..., main="...")
lines(dat$ATM, pred[,2], col=...)
lines(dat$ATM, pred[,3], col=...) 


