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Course Organization

Applied Statistical Regression — AS 2012

People:
Lecturer: Dr. Marcel Dettling (marcel detting@zhaw ch)
c Chri (nowzohour@stat math ethz ch)
Alan Muro Jimenez (muro@stat math ethz ch)
Course Schedule:
All lectures will be heid at HG D1.1, on Mondays from 8.15-9.00, resp. 9.15-10.00.
Week Date L/E Topics
07 17.00.2012 — —
02 24.09.2012 UL Linear Modeling, Smoothing
03  0110.2012 E/E Introduction to R
04 08.10.2012 UL  Simple Regr ion, Variable {
05 1510.2012 UE Fitting Multiple Linear Regression Models
06 22.10.2012 UL Inference for Multiple Linear Regressions
07  2910.2012 UE Extensions: Categorical Variables, Interactions
08 05.11.2012 UL  Model Diagnostics: Residual Plots
[ 12.11.2012 UE Model Choice: Variable Selection
10 19.11.2012 UL  Cross Validation, Modeling S i
11 26112012 UE Logistic and Binomial Regression
12 03.12.2012 UL Regression for Nominal and Ordinal response
13 10.12.2012 LUE Poisson Regression for Count Data
14 17.12.2012 UL  Advanced Topics

Exercise Schedule:

The exercises start on October 1, 2012 from 8.15 to 10.00 with an introduction to the
statistical software package R. This takes place at the computer labs, the rooms will be

by the via e-mail. Then, the exercise schedule is as follows:
Series Date Topic Hand-In Discussion
: = 01102012 |
02 01.10.2012 Simple Regression 08.10.2012  15.10.2012
03 15.10.2012 Muttiple Regression 1 22102012 29.10.2012
04 29.10.2012 Multiple Regression 2 05.11.2012 12.11.2012
05 12.11.2012 Multiple Regression 3 19112012 26.11.2012
06 26.11.2012 Logistic Regression 03.122012 10.12.2012
o7 10.122012 Count and Ordinal Data — 10.12.2012

All exercises except the R introduction take place at HG E41 (group of Nowzohour) and
HG D1.1 (group of Jimenez). All students whose last name starts with letters A-K visit the
group of Nowzohour, whereas the ones with letters L-Z visit the Jimenez group.

The solved exercises should be handed in at the end of the lecture of the due date or
placed in the comresponding fray in HG J68 until 12.00am. Please note that only final
recapitulatory documents shall be handed in, but no R script files.

Marcel Dettling, Zurich University of Applied Sciences
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What is Regression?

The answer to an everyday question:
How does a target variable of special interest depend on
several other (explanatory) factors or causes.

Examples:

o growth of plants, depends on fertilizer, soil quality, ...

o apartment rents, depends on size, location, furnishment, ...
e car insurance premium, depends on age, sex, nationality, ...

Regression:
e quantitatively describes relation between predictors and target
* high importance, most widely used statistical methodology

Marcel Dettling, Zurich University of Applied Sciences
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Regression Mathematics
- See blackboard...

Marcel Dettling, Zurich University of Applied Sciences



Applied Statistical Regression
AS 2013 — Week 02

What Is Regression?
Example: Fresh Water Tank on _gpredelweiss air Planes

e Earlier: it was impossible to predict the amount of fresh water
needed, the tank was always filled to 100% at Zurich airport.

« Goal: Minimizing the amount of fresh water that is carried.
This lowers the weight, and thus fuel consumption and cost.

 Task: Modelling the relation between fresh water consumption
and # of passengers, flight duration, daytime, destination, ...
Furthermore, quantifying what is needed as a reserve.

 Method: Multiple linear regression model

i niversity of Applied Sciences
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Goals with Linear Modeling

—->To understand the relation between

e Does the fertilizer positively affect plant growth?
* Regression is a tool to give an answer on this
 However, showing causality is a different matter

—>Target value prediction for new configurations

 What are the expected claims for auto insurance?
 Regression analysis formalizes “prior experience”
e |t also provides an idea on the uncertainty of the prediction

Marcel Dettling, Zurich University of Applied Sciences
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Regression: Goals

1) Understanding the relation between y and X,..., X,

The aim is to pin down which of the predictors have influence on
the response variable, as well as to quantify the strength of this
relation. There Is a battery of statistics and tests that address

these questions.
2) Prediction

The regression equation can be used for predicting the expected
response value y for an arbitrary predictor configuration X, ..., X,,
We will not only generate point predictions, but can also attribute
a prediction interval that quantifies the involved uncertainty.

Marcel Dettling, Zurich University of Applied Sciences
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Simple Regression

In this course, we first discuss simple regression, where there is
only one single predictor variable. Later, we will extend this to
multiple regression, where many predictors can be present.

Advantages of discussing simple regression:

e Visualization of data and fit is possible
 Corresponds to estimating a straight line or curve
e |s also mathematically simpler and more intuitive

We start out with smoothing, i.e. fitting non-parametric curves.
Then, we will proceed with discussing linear models, I.e. the
classical parametric regression approach.

Marcel Dettling, Zurich University of Applied Sciences
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Example: Airline Passengers

Each month, Zurich Airport publishes the number of air traffic
movements and airline passengers. We study their relation.

FLUGHAFENZURICH

Verkehrsentwicklung 1990-2010
Traffic development 1990-2010

Flugbewegungen
Aircraft movements

10



Applied Statistical Regression
AS 2013 — Week 02

Example: Airline Passengers

Month

2010-12

2010-11

2010-10

2010-09

2010-08

Pax

1°730'629

1°772'821

2238314

2139404

2230°150

ATM

22'666

22'579

24'234

24'172

24'377

Marcel Dettling, Zurich University of Applied Sciences
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Smoothing

We may use an arbitrary Flughafen Ziirich: Pax vs. ATM
smooth function f(-) for
capturing the relation bet-
ween Pax and ATM.

e |t should fit well, but
not follow the data too
closely.

Pax

e The question is how
the line/function are
obtained.

1400000 1600000 1800000 2000000 2200000
I

I I I I I I I
19000 20000 21000 22000 23000 24000 25000

Flugbewegungen

Marcel Dettling, Zurich University of Applied Sciences 12
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Linear Modeling

A Straight |ine represents Flughafen Zurich: Pax vs. ATM
the systematic relation
between Pax and ATM.

e Only appropriate if the
true relation is indeed §
a straight line

ax

 The question is how
the line/function are

1400000 1600000 1800000 2000000 2200000
I

I I I I I I I
obtained. 19000 20000 21000 22000 23000 24000 25000

Flugbewegungen

Marcel Dettling, Zurich University of Applied Sciences 13
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Smoothing vs. Linear Modeling

Advantages and disadvantages of smoothing:

+ Flexibility

+ No assumptions are made

- Functional form remains unknown
- Danger of overfitting

Advantages and disadvantages of linear modelling:

+ Formal inference on the relation is possible
+ Better efficiency, I.e. less data required

- Only reasonable if the relation is linear

- Might falsely imply causality

i niversity of Applied Sciences
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Smoothing

Our goal is visualizing the relation between the Y / response
variable Pax and the X/ predictor variable ATM.

- we are not after a functional description of f ()

Since there is no parametric function that describes the response
vs. predictor relation, smoothing is also termed non-parametric
regression analysis.

Method/ldea: "Running Mean"

- take a window of x-values

- compute the mean of the y-values within the window

- this I1s an estimate for the function value at the window center

Marcel Dettling, Zurich University of Applied Sciences
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Running Mean: Example

Running Mean: Beispiel

0 _|
N
21.44 21.83
* [ ]
o _
~ 17.96 18.18
P [ ]
15.59
Lr) ] [ ]
— 13.62
[ ]
11.07
[ ]
o _|
—
7.68
6.31 *
5.55 .
[ ]
Lr) —
i i i i i
2 4 6 8 10

Marcel Dettling, Zurich University of Applied Sciences
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Running Mean: Mathematics

RunningMean(x) = Mean of y-values over a window with
width +4 /2 around X.

The estimate for f(.), denoted as f} (-), Is defined as follows:

The weights are defined as W, =

|
and A is the window width.

1 if [ x=x;|€4/2
0 else

Marcel Dettling, Zurich University of Applied Sciences 17
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Running Mean: R-Implementation

As an introductory exercise, it is instructive to code a function
that computes and visualizes the running mean.
Arguments: Xx= X values

YYy= y values

width= window width

steps= # of points computed

Alternatively, one can simply use function ksmooth(). The
window size can be adjusted by argument bandwidth=.
Some other settings can be made, especially with respect
to evaluation.

- We will now study the running mean fit...

ich University of Applied Sciences 18
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Running Mean: R-Implementation

Kernel Regression Smoother

Description

The Madaraya—\Watson kernel regression estimate.

Usage
kzmooth (x, v, kermel = c({"box", "normal"™), bandwidth = 0.5,
range.x = range (x),
n.points = max (100, length(x)), =x.points)
Arguments
X input x values
¥ input v values

kernel the kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as probability densities) are at +* 0.25*bandwidth.
range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing, n.points are chosen uniformly to cover range . x.

Marcel Dettling, Zurich University of Applied Sciences
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Running Mean: Unigue Data

> plot(Pax ~ ATM, data=unique2010, main=""..

> lines(fit, col="red", lwd=2)

Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, x.points=ATM

2200000
l

19000 20000 21000 22000 23000 24000 25000
ATM

1400000
l

)
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Running Mean: Unigue Data

> plot(Pax ~ ATM, data=unique2010, main=""..

> lines(fit, col="red", lwd=2)

Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, n.points=1000

2200000
l

19000 20000 21000 22000 23000 24000 25000
ATM

1400000
l
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Running Mean: Drawbacks

« The finer grained the evaluation points are, the less smooth
the fitted function turns out to be. This is unwanted.
Reason: datapoints are "lost" abruptly.

* For large window width, we loose a lot of information on the
boundaries. For small windows however, we may have too
few points withing the window, and thus instability.

- There are much better smoothing algorithms!

We will introduce:
a) a Gaussian Kernel Smoother, and
b) the robust LOESS-Smoother

i niversity of Applied Sciences

22



Applied Statistical Regression
AS 2013 — Week 02

Gaussian Kernel Smoother

KernelSmoother(x) = Gaussian bell curve weighted average
of y-values around x.

The estimate for f(-), denoted as fl (-) Is defined as:

: - : (X - Xj)2 :
The weights are defined as:wW; =exp| — |1.€.
the window is infinitely wide, A

but distant observation obtain little weight.

Marcel Dettling, Zurich University of Applied Sciences
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Gaussian Kernel Smoother:
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Gaussian Kernel Smoother: Unique Data

> ks.gauss <- ksmooth(ATM, Pax, kernel="normal', band=1000)
> plot(ATM, Pax, xlab="ATM", ylab=""Pax', pch=20)
> lines(ks.gauss, col="darkgreen', lwd=1.5)

Zurich Airport Data: Pax vs. ATM / Bandwidth=1000, n.points=1000

2200000
!

19000 20000 21000 22000 23000 24000 25000
ATM

25
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LOESS-Smoother

The LOESS-Smoother is better, more flexible and more robust
than the Gaussian Kernel Smoother. It should be prefered!

It works as follows:
1) Choose a window of fixed width

2) For this window, a straight line (or a parabola) is fitted to
the datapoints within, using a robust fitting method.

3) Predicted value at window center = fitted value

4) Slide the window over the entire x-range
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LOESS-Smoother: Idea
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LOESS-Smoother: R-Implementation

Scatter Plot with Smooth Curve Fitted by Loess

Description

Plot and add a smooth curve computed by 1oe== to a scatter plot.

loess.smooth(X, ¥V, Span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation = 30, ...}
Arguments
X, ¥V the = and v arguments provide the x and y coordinates for the plot. Any reasonable way of defining the coordinates is
acceptable. See the function zy.cooxrds for details.
span smoothness parameter for 1oess.
degree degree of local polynomial used.
family if "gaus=ian™ fitting is by least-squares, and If family="symmetxric™ a re-descending M estimator is used.
xlab label for x axis.
ylab label for v axis.
vlim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

Marcel Dettling, Zurich University of Applied Sciences 28
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LOESS-Smoother: Unigue Data

> smoo <- loess.smooth(unique2010$ATM, unique2010$Pax)
> plot(Pax ~ ATM, data=unique2010, main=...)
> lines(smoo, col="blue™)

Loess-Glatter: Default-Einstellung

2200000
l

Pax
1800000
|

19000 20000 21000 22000 23000 24000 25000
ATM

1400000
!
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Linear Modeling

A straight line represents
the systematic relation
between Pax and ATM.

e Only appropriate if the
true relation is indeed §
a straight line

ax

 The question is how
the line/function are
obtained.

1400000 1600000 1800000 2000000 2200000

Marcel Dettling, Zurich University of Applied Sciences

Flughafen Zirich: Pax vs. ATM

I I I I I I I
19000 20000 21000 22000 23000 24000 25000

Flugbewegungen
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Simple Linear Regression

The more air traffic movements, the more passengers there are.
The relation seems to be linear, which is of course also the
mathematically most simple way of describing the relation.

f(X) =, + BX resp. Pax = g, + 5, - ATM

Name/meaning of the two B, = "Intercept”
parameters in the equation: S, = "Slope"

Fitting a straight line into a 2-dimensional scatter plot is known
as simple linear regression. This is because:

» there is just one single predictor variable ("simple").

* the relation is linear in the parameters ("linear").

Marcel Dettling, Zurich University of Ap plied Sciences 31
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Model, Data & Random Errors

No we are bringing the data into play. The regression line will not
run through all the data points. Thus, there are random errors:

yi — ﬂo +ﬂlxi + Ei, for all | =1,..., n
Meaning of variables/parameters:
Y, is the response variable (Pax) of observation I .

X is the predictor variable (ATM) of observation I .

By, B, are the regression coefficients. They are unknown
previously, and need to be estimated from the data.

Ei IS the residual or error, I.e. the random difference bet-
ween observation and regression line.

Marcel Dettling, Zurich University of Applied Sciences
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Least Squares Fitting

9

Instructions for this demo are down below the graph.

oo wenee | VW€ Need to fit a straight

oo line that fits the data well.

7o - c

B ... | Many possible solutions

cd exist, some are good,

1 " some are worse.

3o LS line

»d Our paradigm is to fit the
Sum of Sguares = 78 _ ]

1g line such that the squared

errors are minimal.

100 200 300 400 500 600 700 800 9200

Marcel Dettling, Zurich University of Applied Sciences 33
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Least Squares: Mathematics

The paradigm in verbatim...

Given a set of data points (X, Y;),, . the goal is to fit the
regression line such that the sum of squared differences
between observed value Y, and regression line is minimal.

The function
QU )= D = D (1, = 9" = X3, — (f,+ Ax)) = min

measures, how well the regression line, defined by 3, 5, fits
the data. The goal is to minimize this "quality function".

Solution: 2 see next slide...

Marcel Dettling, Zurich University of Applied Sciences 34
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Solution Idea: Partial Derivatives

* We are taking partial derivatives on the function Q(4,, 4,) with
respect to both arguments £, and f,. As we are after the
minimum of the function, we set them to zero:

xR —(0 and @: 0
Of; op,

 This results in a linear equation system, which (here) has two
unknowns £, [, but also two equations. These are also
known under the name normal equations.

« The solution for f3,, 5, can be written explicitly as a function of
the data pairs (X.,V.)., ,,see next slide...

niversity of Applied Sciences
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Least Squares: Solution

According to the least squares paradigm, the best fitting
regression line is, I.e. the optimal coefficients are:

) Z(X—X)(y. y)
p, == and £,=V-BX

Z(Xi _Y)

» For a given set of data points (X, Y.)._, ,-we can determine

the solution with a pocket calculator (...or better, with R).

« The solution for our example Pax vs. ATM:
B, =138.8, B, =-1'197'682 obtained from

> Im(Pax ~ ATM, data=uni...)

ich University of Applied Sciences
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Fitted Values

The estimated parameters f,, 5, can be used for determining
the fitted values y. Please note that mathematically, this is a

conditional expected value::
y =E[y|X]= 8, + BX
In R, the fitted values are obtained as follows:

> fi1t <- Im(Pax ~ ATM, data=unique2010)
> fitted(fit)

1 2 3 4 S
1654841 1808312 2165068 2156465 2184911
6 7 8 9

2250545 2108731 2062107 1493184

niversity of Applied Sciences 37
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Drawing the Regression Line

> plot(Pax ~ ATM, data=unique2010, pch=20)
> title("Zurich Arrport Data: Pax vs. ATM™)
> abline(fit, col="red", Iwd=2)

Zurich Airport Data: Pax vs. ATM

2200000
!

S\/:ﬁo"hélx

19000 20000 21000 22000 23000 24000 25000
ATM

1400000
!
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Is This a Good Model for Predicting the
Pax Number from the ATM?

a) Beyond the range of observed data
Unknown, but most likely not...

b) Within the range of observed data

Yes, under the following conditions:
- the relation is in truth a straight line, i.e. E[E,]=0
- the scatter of the errors is constant, i.e. Var(E,) = ¢*
- the data are uncorrelated (from a representative sample)
- the errors are approximately normally distributed

Marcel Dettling , Zurich University of Applied Sciences 39
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Model Diagnostics

For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
E[E.]=0 and Var(E,) = o* can be reviewed by:

Residuals vs. Predictor ATM Residuals vs. Fitted Values

< . S LI

o o

T - T

) . ) .

Lo ° . . Lo . .
w o / »w o - /
g ? i \ . g ? | \ .
_9 @ \/ _9 O . \/
n © ® ° n © * .
(O] - O] -
D: q_ . D: Q‘ Y

o o

T F

) . )

o o

o ¢ . . 0

o o

F _| +

) )
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19000 21000 23000 25000 1400000 1800000 2200000

ATM Fitted 40
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Model Diagnostics

For assessing the quality of the regression line, we need to
(at least roughly) check whether the assumptions are met:
Gaussian distribution can be reviewed by:

Normal Q-Q Plot

We will revisit model diagnostics
again later in this course, where
it will be discussed more deeply.

0e+00 5e+04

Sample Quantiles

"Residuals vs. Fitted" and the
"Normal Plot" will always stay at
. the heart of model diagnostics.

-2 -1 0 1 2

-le+05
|

Theoretical Quantiles
41
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Why Least Squares?
History...

Within a few years (1801, 1805), the method was developed
Independently by Gauss and Legendre. Both were after solving
applied problems in astronomy...

Source: = http://de.wikipedia.org/wiki/Methode der kleinsten Quadrate

Beobachtungen 8es ru Palerma @, Yo, *8o1 von Prol. Pimui neu entdeckten Gaftirms,

.. 3
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Marcel Dettling, Zurich University of Applied Sciences
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Why Least Squares?
Mathematics...

o Least Squares is simple in the sense that the solution is
known in closed form as a function of (X, V:)._

 The line runs through the center of gravity (X, Y)

» The sum of residuals adds up to zero: D), =0
i=1

« Some deeper mathematical optimality can be shown when
analyzing the large sample properties of the estimates £,, 5,
This is especially true under the assumption of normally
distributed errors E..

i niversity of Applied Sciences 43
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Gauss-Markov-Theorem

A mathematical optimality result for the Least Squares line
It only holds if the following conditions are met:

- the relation is in truth a straight line, i.e. E[E;]=0
- the scatter of the errors is constant, i.e. Var(E; ) = o
- the errors are uncorrelated, i.e. Cov(E;,E;) =0, If 1+ |

Not yet required:
- the errarsarenormally-distributedF_~ N (0,02

Gauss-Markov-Theorem:
- Least Squares yields the best linear unbiased estimates

i niversity of Applied Sciences 44
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Properties of the Least Square Estimates

Under the conditions above, the estimates are unbiased:

E[Iéo] — :Bo and E[Iél] — 181

The variances of the estimates are as follows:

2
O¢

Z:]:l(xi —-X)*

Var(;éo) = O-é (14_ Zlnl(i Y)ZJ and Var(;él) —

N

Precise estimates are obtained with:

- alarge number of observations n

- a good scatter in the predictor X

- an informative/useful predictor, making o2 small

- (an error distribution which is approximately Gaussian)

Marcel Dettling , Zurich University of Applied Sciences 45



Applied Statistical Regression
AS 2013 — Week 04

Estimating the Error Variance

Besides the regression coefficients, we also need to estimate
the error variance. It is a necessary ingredient for all tests and
confidence intervals that will be discussed shortly.

The estimate is based on the residual sum of squares (RSS):
R 1 < -
Gé :—'Z(yi - yi)2
N—2 53
In R, the regression summary provides the estimate for the

error’'s standard deviation as Residual standard error:

> summary(fit)

Residual standard error: 59700 on 22 degrees of freedom
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Benefits of Linear Regression
* Inference on the relation between y and X

The goal is to understand if and how strongly the response
variable depends on the predictor. There are performance
Indicators as well as statistical tests adressing the issue.

* Prediction of (future) observations

The regression line/equation can be employed to predict
the PAX number for any given ATM value.

9 — /80 T :le
However, this mostly will not work well for extrapolation!

i niversity of Applied Sciences
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R% The Coefficient of Determination

The coefficient of determination R is also known as multiple
R-squared. It tells which portion of the total variation is
accounted for by the regression line.

Flughafen Zirich: Pax vs. ATM
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Flugbewegungen
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Computation of R’

R* is the portion of the total variation that is explained through
regression. It is determined as one minus the quotient of the
yellow arrow divided by the blue arrow.

S (5 - v,)°
R? =1 &L e [0,1]
Z(yi _7)2

The closer to 1 the value is, the tighter the datapoints are
packed around the regression line. However, there are no
formal criteria which R* value needs to be met such that

the regression can be said to be useful/valid.
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Confidence Interval for the Slope £,

A 95%-Cl for the slope B, tells which values (besides
the point estimate f3,) are plausible, too. The uncertainty
IS due to estimation/sampling effects.

95%-Cl for [, : ,31 + Qty o750 2O 5+ resp.
,Bl as CIto.975;n—2 '\/&E/Zin:l(xi - Y)2

InR: > it <- Im(Pax ~ ATM, data=unique2010)
> confint(fit, "ATM™)
2.5 % 97.5 %
ATM 124.4983 153.025
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Testing the Slope £,

There Is a statistical hypothesis test which can be used to check
whether the slope is significantly different from zero, or any other
arbitrary value b . The null hypothesis is:

H,:3,=0,resp. H,: B, =D

One usually tests two-sided on the 95%-level. The alternative is:
H,:B,#0,resp. H,: B #b

As a test statistic, we use:

- A

o0 = = €SP Ty :'Bﬂ—_b, both have a t_, distribution.

O N
A 9%

e N




Applied Statistical Regression
AS 2013 — Week 04

Reading R-Output
> summary(Im(Pax ~ ATM, data=dat))

Call: Im(formula = Pax ~ ATM, data = dat)

Residuals: MiIn 10 Medran 30 Max
-104188 -40885 2099 48588 89154

Coefficients: Estimate Std. Error t value Pr(c|t])
(Intercept) -1.198e+06 1.524e+05 -7.858 7.94e-08 ***
ATM 1.388e+02 6.878e+00 20.176 1l.11le-15 ***

Residual standard error: 59700 on 22 degrees of freedom
Multiple R-squared: 0.9487, Adjusted R-squared: 0.9464
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.110e-15

- Will be explained in detail on the blackboard!

Marcel Dettling, Zurich University of Applied Sciences
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Testing the Slope £,

Practical Example:

Use the Pax vs. ATM data and perform a statistical test for the
null hypothesis H, : £, =150. The information from the summary
on slide 25 can be used as a basis. Then, also answer:

a) Explain in colloquial language what was just tested. What is
the benefit of this test? What claims could motivate the test?

b) How does the testing result relate with the 95%-CI that we
computed on slide 23? Would we be able to tell the test
results from the CI alone?

- See blackboard for the answers
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Testing the Intercept /,

An analogous test can be done for the intercept.

Marcel Det

No matter what the test result will be, the intercept should
generally not be omitted from the regression model.

The presence of the intercept protects against possible
non-linearities and calibration errors of measurement
devices. If it is kicked out of the model, the results are
generally worse.

If theory dictates that there should not be an intercept but
it is still significant, take this as evidence that the linear
relation does not hold when extrapolating to x =0.

tling, Zurich University of Applied Sciences
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Prediction

Using the regression line, we can predict the Yy-value for any
desired X-value. The result is the expectation for y given X.

E[y|x]=Yy = ,éo +,51X a.k.a. "fitted value"
Example: With 24’000 air traffic movements, we expect
—1'197'682 +24'000-138.8 = 2'133'518 Passengers
Be careful:

At best, interpolation within the range of observed X-values is
trustworthy. Extrapolation with ATM values such as 50’000,
5'000 or even 0 usually produces completely useless results.
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Prediction with R

We can use the regression fit object for prediction. The
syntax for obtaining the fitted value(s) is as follows:

> fi1t <- Im(Pax ~ ATM, data=unique2010)
> dat <- data.frame(ATM=c(24000))

> predict(fit, newdata=dat)

1 2132598

The X-values need to be provided in a data frame, where the
variable/column name is identical to the predictor name.

Then, the predict() procedure is invoked with the regression
fit and the new X-values as arguments.
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We just computed the fitted value ,BA’O + ,6A'1X, l.e. the expected
number of passengers for 24'000 ATMs. This is not a deter-
ministic value, but an estimate that is subject to variabllity.

A 95%-ClI for the fitted value at position X is given by:

A oA .~ |1 (X —X)°
/Bo + ﬂlx T qt0.975;n—2 ‘O~ H T n —\?
:E:ha(xi__x)
In R: > predict(fit, newdata=dat, interval="confidence')
it fwr upr

1 2132598 2095450 2169746
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Prediction Interval for Y

The confidence interval for E[Y | X] tells about the variabilty of
the fitted value. It does not account for the scatter of the data
points around the regression line and thus does not define a
region where we have to expect the observed value. A 95%
prediction interval at position X Is given by:

~ A . 1 (X —X)’
180 + ﬂlx T qt0.975;n—2 ‘Og - 1+ H T n —\D
Zi:l(xi o X)
In R: > predict(fit,newdata=dat, interval=""prediction’)
fit fwr upr

1 2132598 2003343 2261853
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Confidence and Prediction Interval

Pax vs. ATM with Confidence and Prediction Interval
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Confidence and Prediction Interval
Note:

Visualizing the confidence and prediction intervals in R is
not straightforward, but requires some tedious handwork.

R-Hints:

dat <- data.frame(ATM=seq(...,.-.., length=200))
pred <- predict(fit, newdata=dat, interval=...)
plot(..., ..., main="___"")

I 1nes(dat$ATM, pred[,2], col=...)
lines(dat$ATM, pred[,3], col=...)
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