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1 Introduction 

1.1 What is Regression? 

Regression can be seen as the answer to an everyday question, namely how a 
target value of special interest depends on several other factors or causes. 
Examples are numerous and include: 

 how fertilizer and soil quality affects the growth of plants 

 how size, location, furnishment and age affect apartment rents 

 how age, sex, experience and nationality affect car insurance premiums 

In all quantitative settings, regression techniques can provide an answer to these 
questions. They describe the relation between some explanatory or predictor 
variables and a variable of special interest, called the response or target variable. 
Regression techniques are of high practical importance, and probably the most 
widely used statistical methodology. 

Example 

In an applied research project at ZHAW, we tried to understand and manage the 
fresh water consumption on board of      Edelweiss Air planes. Fresh water is 
mostly used in the toilet. Minimizing the carried amount was identified as 
important, because this reduces the weight of the airplane, and thereby fuel 
consumption and cost. The project goal was to relate the consumption on the 
number of passengers and flight duration, but also on less obvious parameters 
such as daytime and destination. Furthermore, it was required to quantify a well-
calculated reserve, to set up a simple prediction scheme and to perform 
operations management on the filling of the tank. 
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1.2 Regression Mathematics 

In the Edelweiss Air example, we can identify the fresh water consumption as the 
target value and denote it as the response variable y . The explanatory causes or 
predictors are number of passengers, flight duration, plus a few more. These are 
denoted with 1 2, ,..., px x x , assuming that there are p  predictors. The goal is linking 
the target to the predictors, which could happen with this model: 

 1 2( , ,..., )py f x x x E   

The target value is obtained as the sum of some function ( )f   applied on the 
predictors, plus an error term E . Why the error? In practice, it is highly unlikely 
that 1 2( , ,..., )pf x x x  yields an all-case perfect explanation of the fresh water 
consumption. The error is there to catch the imperfection and summarizes the 
remaining variation in the response. It is assumed to be random and can neither 
be controlled or predicted. On the other hand, 1 2( , ,..., )pf x x x  is called the 
systematic or deterministic part of the regression equation. 

The task is thus to learn about the function ( )f  . In full generality, without any 
restrictions, this is a very difficult problem: function space is infinite-dimensional, 
thus there are just too many options such that we could come to a unique solution 
based on just a few dozens of observations. It has proven practical to be very 
restrictive with the form of functions ( )f   that are considered, i.e. a linear model is 
assumed: 

 0 1 1 2 2 ... p py x x x E          

This setup is called linear modeling. It boils down to determine some parameters 

0 1 2, , ,..., p     from observed data points, a task we call estimation in statistics. 
Please note that this is mathematically much simpler than finding ( )f   without 
imposing any conditions.  

One might of course fear that the limitation to linear modeling is too restrictive. 
However, practice proves this not to be the case, with the main reason being that 
only the parameters, but not the predictors need to enter linearly. In particular, the 
following structure is still a linear model: 

 2
0 1 1 2 1 3 2 4 1 2( ) log( )y x x x x x E           

For such models, it is possible to estimate the parameters from a relatively low 
number of data points with the least squares algorithm that will be presented 
shortly. Using variable transformations as outlined above, linear modeling 
becomes a very rich and flexible tool. Truly non-linear models are rarely absolutely 
necessary in practice and most often arise from a theory about the relation 
between the variables rather than from necessity in an empirical investigation. Of 
course, the right variable transformations need to be found, but using some simple 
guidelines and visual displays this is a manageable task, as we will see later. 
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1.3 Goals with Regression 

There are a variety of reasons to perform regression analysis. The two most 
prominent ones are: 

Gaining some understanding on the causal relation, i.e. doing inference 

In the mortality example outlined in the chapter about multiple linear regression, 
one is be interested in testing whether air pollution affects mortality, under control 
of potentially confounding factors such as weather and the socio-demographic 
factors. We will see that regression, i.e. linear modeling offers tools to answer 
whether air pollution harms in statistically significant way. Drawing conclusions on 
true causal relationship, however, is a somewhat different matter. 

Target value prediction as a function of new explanatory variables 

In the fresh water consumption example from above, an airplane crew or the 
ground staff may want to determine the amount of water that is necessary for a 
particular flight, given its parameters. Regression analysis, i.e. linear modeling 
incorporates the previous experience in that matter and yields a quantitative 
prediction. It also results in prediction intervals which give a hint on the uncertainty 
such a prediction has. In practice, the latter might be very useful for the amount of 
reserve water that needs to be loaded. 
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2 Simple Regression 
The term simple regression means that there is a response and only one single 
predictor variable. This has several practical advantages: we can easily visualize 
the two variables and their relation in a scatterplot, and the involved math is quite 
a bit easier. We will first address non-parametric curve fitting, also known as 
smoothing. Later, we proceed to linear modeling which in its most basic form 
amounts to laying a straight line into the scatterplot. But as we will see, linear 
modeling can also be used for fitting curves. 

2.1 Example: Zurich Airport Data 

The example we consider for developing the methodology is from Zurich Airport. 
Every month, the number of air traffic movements as well as the number of 
passengers is reported. The two variables are named ATM and Pax, with the 
former being the predictor, and the latter being the response. The goal is to predict 
passenger figures for future months based on the flight plan, and to quantify the 
uncertainty in these forecasts. The data are publicly accessible here: 
http://www.flughafen-zuerich.ch/desktopdefault.aspx/tabid-612/ 

 

 

 

 

 

 

to understand how  

 

We could display the figures in a table, but a much better solution is to visualize 
them in a scatterplot, as shown on the next page. As the first step, we need to 
import the data into R. Assuming that the data exist in form of an Excel spread 
sheet; we recommend exporting them in a comma- or tab-separated text file. In R, 
we can then use the function read.table(), respectively one of the tailored 
versions like read.csv() (for comma separation) or read.delim() (for tab 
separation), for importing the data. This will result in a so-called data frame, the 
structure which is most suitable for performing regression analysis in R. In our 
example, the Zurich Airport Data are stored in a data frame named unique2010. 
For producing a scatterplot, we can employ the generic plot() function, where 
several additional arguments can be set. 
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> plot(Pax ~ ATM, data=unique2010) 
> title("Zurich Airport Data: Pax vs. ATM") 

 

The question is how the systematic relation between Pax and ATM can be 
described. We could imagine that an arbitrary, smooth function ( )f   that fits well 
to the data points, without following them too closely, is a good solution. Another 
good and popular option would be to use a straight line for capturing the relation. 

The advantages of smoothing are its flexibility and the fact that less assumptions 
are made on the form of the relation. This comes with the price that the functional 
form generally remains unknown, and that we can overfit, i.e. adapt too much to 
the data. With linear modeling, we have the benefit that formal inference on the 
relation is possible and that the efficiency is better, i.e. less data are required for a 
good estimate. The downside of the parametric approach is that it is only viable if 
the relation is linear, and that it might falsely imply causality. 

2.2 Scatterplot Smoothing 

We start out with the smoothing approach. The goal here is to visualize the 
relation between Pax and ATM, but we are not after the functional form of ( )f  . 
Because there is no parametric function that describes the response-predictor 
relation, smoothing is also known as non-parametric regression analysis.  

2.2.1 Running Mean Estimation 

A simple yet intuitive smoother is the running mean. In colloquial language it 
involves taking a fixed width window on the x -axis, and compute the mean over all 
the within-window data point’s y -values. That value then is the estimate for the 
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function value at the window center. In mathematical notation, the running mean 
estimate for the unknown function ( )f   denoted as ˆ ( )f  , is defined as follows: 

 1
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n

i i
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The parameter   is the window width and controls the amount of smoothing. 
Small values mean close adaptation to the data, while large values indicate 
averaging over more data points and thus a smoother solution. In R, running mean 
smoothing can be done with function ksmooth(): 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=24, x.points= 
                 unique2010$ATM) 

The argument kernel="box" tells R to use a rectangular kernel, and the 
bandwidth=1000 argument steers the window width. Finally, n.points and 
x.points regulate at how many and which x -values the estimate is computed. 
Here, we choose to do that at the positions of the observed ATM values. The 
solution can be plotted: 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> title("Zurich Airport Data: Pax vs. ATM") 
> lines(fit, col="red", lwd=2) 

 

Perhaps a little more smoothing is required here, because we would hardly believe 
in a (systematic) relation that shows a decrease in passengers if the number of air 
traffic movements raises from 20’500 to 21’000. However, we leave this as an 
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exercise to the reader. To point out an important drawback of running mean 
estimation, we increase the number of evaluation points to 1000 that uniformly 
cover the range of ATM and then plot the result: 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=1000) 

 

We obtain a function that is not smooth at all, but this is not a surprise. By 
construction, due to the rectangular kernel, data points drop out of the running 
mean computation abruptly, and hence we have the jumps. We can fix the 
problem by using a kernel with infinite support, i.e. none of the weights should be 
exactly zero. 

2.2.2 Gaussian Kernel Smoothing 

An obvious choice for a weighting scheme that puts emphasis on nearby data 
points, down weighs distant observations and is never zero is the probability 
density function of the Gaussian distribution. The definition is: 
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. 

Thus, there is no longer a window that determines which data points take part in 
the running mean computation. But we use a Gaussian bell curve that determines 
the weights for the observations – no matter where, always all of them are used to 
compute the estimate. As we can easily imagine, this solves the issue with the 
data points that are lost abruptly, and the result is a smooth function: 
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> fit <- ksmooth(unique2010$ATM, unique2010$Pax, 
                 kernel="normal", n.points=1000, 
                 bandwidth=1000) 

 

The bandwidth here has a slightly different meaning in the sense that it does no 
longer define a true window, but it controls the standard deviation of the 
associated Gaussian. The value 1000 in our example means that the 25%-quantile 
of that distribution is at 0.25 1'000 250     and the 75%-quantile is at 250 . 

While visually, the solution may look more or less reasonable here, a closer 
inspection suggests that it is rather sensitive to outliers. Moreover, there is a 
severe boundary effect associated with both the running mean and the Gaussian 
kernel estimator. Because near the boundaries, we do not observe a full window, 
we have a bias. At the lower end of the x -range, the smoother overestimates, 
while at the upper end of the range, it underestimates. 

2.2.3 The LOESS Smoother 

There is a wealth of literature that suggests improvements on kernel smoothing. 
However, with this scriptum, we will not further embark in that topic. But we 
present the LOESS smoother: it is a robust procedure that has nicer mathematical 
properties than the kernel smoothers, and that should be preferred in practice. 
LOESS is based on local parametric regressions: for obtaining the estimate at x , 
linear or polynomial models are fitted using data points in a neighborhood of x , 
weighted by their distance from x . The type of models used (linear or polynomial), 
the size of the neighborhood and also the type of fitting algorithm (least squares or 
robust) can be controlled in R. 

We do here without giving any theoretical details about the LOESS estimator. This 
is beyond the scope of our course, and it also requires intimate knowledge of 
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linear modeling, which we do not yet have. However, as we will encounter LOESS 
smoothers throughout our studies in linear modeling, and it is a handy tool for 
visualizing the relation between two variables, we provide the necessary R 
commands: 

> smoo <- loess.smooth(unique2010$ATM, unique2010$Pax) 

For the loess.smooth() function, we need to specify the x  and y  variables. 
There are some further adjustments that can be made, but this is rarely necessary, 
because the default settings usually yield good results. Argument span controls 
the amount of smoothing and is set to 2/3. Per default, we have degree=1 which 
means local linear fitting, setting this to 2 means more flexibility through local 
polynomial fitting. Finally, family is set to "symmetric", thus robust fitting is 
applied. A least squares fitting routine can be invoked by using "gaussian". 
Lastly, we can control the number of points at which the smoother is evaluated. 
Mostly, the default of evaluation=50 is fine, though it may sometimes be 
required to increase that number for relations with high curvature. We leave it to 
the reader to experiment with those settings and focus on displaying the result. 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(smoo, col="red", lwd=2) 

 

We observe that the LOESS fit is almost, but not exactly a straight line. Surely, 
when comparing to the Running Mean and the Gaussian Kernel Smoother, this is 
the most trustworthy result so far.  
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2.3 Simple Linear Regression 

Instead of the non-parametric smoothing approaches, we will now turn our 
attention to linear modeling in the case where there is a response variable y  and 
only one single predictor x . This problem is known as simple linear regression. 

2.3.1 The Model 

In our example, it seems logical that the more air traffic movements we have, the 
more passengers there are – at least on average. Also, it seems plausible that the 
systematic relation is well represented by a straight line. It is of the form: 

 0 1Pax ATM    , respectively 1( ) of x x    

While this is the mathematically simplest way of describing the relation, it proves 
itself as very useful in many applications. And as we will see later, just some slight 
modifications to this concept render it to a very powerful tool when it comes to 
describing predictor-response relations. The two parameters 0 1,   are called 
intercept and slope. The former is the expected value of y  when 0x  , and the 
latter describes the increase in y  when x  increases by 1 unit. 

We now bring the data into play. It is obvious from the scatterplot that there is no 
straight line that runs through all the data points. It may describe the systematic 
relation well, but there is scatter around it, due to various reasons. We attribute 
these to randomness, and thus enhance the model equation by the error term: 

 0 1i i iy x E    , for all 1,...,i n . 

The index i  stands for the observations, of which there are n  in total. In our 
example, we have 24n  . The interpretation of the above equation is as follows: 

iy  is the response or target variable of the 
thi  observation. In our example, 

this is the passenger number in the 
thi  month. Note that the response is a 

random variable, as it is the sum of a systematic and a random part. 

ix  is the explanatory or predictor variable, i.e. the number of air traffic 
movements in the 

thi  month. The predictor is treated as a fixed, 
deterministic value and has no randomness. 

0 1,   are unknown parameters, and are called regression coefficients. These 
are to be estimated by using the data points which are available. 0  is 
called intercept, whereas 1  is the slope. The latter indicates by how much 
the response changes, if the x -value is increased by 1 unit. 

iE  is the error term. It is a random variable, or more precisely, the random 
difference between the observed value iy  (which is seen as the realization 
of a random variable) and the model value fitted by the regression. 
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2.3.2 The Least Squares Algorithm 

The goal in simple linear regression is to lay a straight line through the data points. 
If we did this by eyeballing, the solution between different persons would perhaps 
be similar, but not identical. It is clear that we cannot leave any arbitrariness for 
the regression line. Thus, we need a clear definition for the best fitting line, as well 
as an algorithm that unveils it. 

Our paradigm for linear modeling is to determine the regression line 
such that the sum of squared residuals is minimal! 

There are a number of reasons for this paradigm which are explained below. We 
illustrate the least squares idea with the help of a very nice Java applet found at 
http://sambaker.com/courses/J716/demos/LeastSquares/LeastSquaresDemo.html: 

 

The applet allows interactive search of the solution by positioning the regression 
line according to the users wish. The squared residuals and their total sum can be 
displayed. While experimentation by hand will eventually lead to the minimum, it is 
cumbersome and laborious. Is there a mathematical procedure that finds the 
solution? The answer is yes, it is the ordinary least squares (OLS) algorithm. 

Picking up the above paradigm, the goal is to fit the regression line such that the 
sum of squared differences ir  between the observed values iy  and the regression 
line is minimal, given a fixed set of data points 1,...,( , )i i i nx y  . We can thus define the 
following function that measures the quality of the fit: 

2 2 2
0 1 0

1 1 1

ˆ( , ) ( ) ( ( )) min!
n n n

i i i i i
i i i

Q r y y y x   
  

          
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The goal is to minimize ( , )Q   . Since the data are fixed, this has to be done with 
respect to the two regression coefficients 0 1,  . Or in other words, the parameters 
need to be found such that the sum of squared residuals is minimal. The idea for 
the solution is to set the partial derivatives to zero: 

 
0

0
Q







 and 
1

0
Q







. 

We leave the calculus as an exercise, but the result is a linear equation system 
with two equations and the two unknowns 0 1,  . In linear algebra, these are known 
as the normal equations. Under some mild conditions (in simple linear regression 
this is: we have at least two data points with different values for ix ), the solution is 
unique and can be written explicitly: 

1
1 2

1

( )( )ˆ
( )

n

i ii
n

ii

x x y y

x x
 



 






 and 0 1
ˆ ˆy x   . 

We put a hat symbol (“^”) on the optimal solutions. This is to indicate that they are 
estimates, i.e. determined from a data sample. Given the data pairs 1,...,( , )i i i nx y   
they could now be computed with a pocket calculator. Or better, and more 
conveniently, with R: 

> lm(Pax ~ ATM, data=unique2010) 
 
Call: 
lm(formula = Pax ~ ATM, data = unique2010) 
 
Coefficients: 
(Intercept)          ATM 
 -1197682.1        138.8 

The lm() command (from linear modeling) is based on the formula interface. The 
relation has to be provided in the form ~y x , and with argument data, it is 
specified in which data frame these variables can be found. The output repeats the 
call and provides the estimates 0̂  and 1̂ .  

The interpretation of this solution is straightforward: every additional air traffic 
movement on average provides 1̂ 138.8   additional passengers. And if there 
were no air traffic movements, we would have 0

ˆ 1'197'682    passengers. While 
the solution for 1̂  is plausible, this is not the case for 0̂ . How can this happen? 

It is because the observed set of data points is very far to the right of 0x  . It tells 
us that the linear relation we identified does not hold for very small numbers of air 
traffic movements. From a practical viewpoint, this is well acceptable. If the 
demand was that much smaller at Zurich Airport, it would be serviced by smaller 
airplanes. Or in other words: the regression line (at best) holds for the data we 
observed, and not for hypothetical values far beyond the range of observed x -
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values. Thus, we do not need to worry much about the negative value for 0̂ . 
Some further explanations on this as well as a potential remedy are provided later 
in this script. Using the estimated parameters, we obtain the fitted values, defined 
as: 

 0 1
ˆ ˆˆi iy x    for all 1,...,i n . 

These can of course be interconnected by the regression line. We here address 
the issue how the fitted values are accessed in R, and how the regression line is 
visualized: 

> fit <- lm(Pax ~ ATM, data=unique2010) 
> fitted(fit) 
      1       2       3       4       5       6       7  
1654841 1808312 2165068 2156465 2184911 2250545 2108731  
      8       9      10      11      12      13      14  
2062107 1493184 1902115 1456135 1679680 1637219 1718394  
     15      16      17      18      19      20      21  
2008267 1994391 2088333 2074873 1947490 1935418 1791799  
     22      23      24  
1733381 1406597 1566867 
 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Zurich Airport Data: Pax vs. ATM") 
> abline(fit, col="red", lwd=2) 

 

The next issue that needs to be addressed is the quality of the solution. The OLS 
algorithm could be applied to any set of data points, even if the relation is curved 
instead of linear. In that case, it would not provide a good solution. The next 
section digs deeper and goes beyond the obvious. 
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2.3.3 Assumptions for OLS Estimation 

The negative value for the estimated intercept had raised some doubts as to 
whether the OLS solution is trustworthy. We argued that 0x   is far beyond the 
range of observed data, and that there is no guarantee that the regression line 
holds there. We can generalize this: on any dataset we perform regression, it 
remains (at best) unclear whether we can extrapolate the straight line, but most 
likely it is not the case. Within the range of observed data, we can make more 
statements. The OLS estimates are trustworthy, if: 

[ ] 0iE E   

The expectation (we could also say the best guess if we need to predict) for the 
errors is zero. This means that the relation between predictor and response is a 
linear function, or in our example: a straight line is the correct fit, there is no 
systematic deviation. Next, we require constant scatter for the error term, i.e.  

2( )i EVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations do not influence each other, and 
that there are no latent variables (e.g. time) that do so. In particular, 

( , ) 0i jCov E E   for all i j .  

Last, we require that the errors are (at least approximately) normally distributed: 

2~ (0, )i EE N   

The OLS algorithm will not yield a good solution under the presence of severe 
outliers or with a skewed error distribution. Moreover, all significance tests and 
confidence intervals that are presented later rely strictly on the Gaussian 
assumption. 

2.3.4 Residual Plots 

Before the regression line is used, we need to check if the assumptions from 
section 2.3.3 are met. For expectation, variance and distribution this could be done 
with the usual y  vs. x  scatterplot. However, it has proven more powerful to 
inspect residual plots that are directed towards identifying potential violations.  

As it turns out, the human eye is easily deceived when it needs to judge if some 
data points follow an inclined straight line. However, it is much better in detecting 
deviations from the horizon. This is utilized in the first residual plot, where the 
effect of the regression line is subtracted. This means that the residuals are plotted 
against the predictor. The visualization can be enhanced by adding a horizontal 
line and a scatterplot smoother (we choose a LOESS). 
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> ## Residuals vs. Predictor 
> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> plot(xx, yy, xlab="ATM", ylab="Residuals", pch=20) 
> title("Residuals vs. Predictor ATM") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 

Another option is to plot the residuals versus the fitted values. This plot is known 
as the Tukey-Anscombe plot, according to the researchers who made it popular. 
As can be seen below, the difference between the two plots is very small, and in 
fact only one of the two is needed here. While plotting residuals vs. predictor is the 
more natural way of doing it in simple regression, the Tukey-Anscombe plot 
provides a simple and intuitive summary in multiple regression, where several 
predictors exists. Thus, it is often also applied for simple regression. 

> ## Tukey-Anscombe Plot 
> uu <- fitted(fit) 
> plot(uu, yy, xlab="Fitted", ylab="Residuals", pch=20) 
> title("Residuals vs. Fitted Values") 
> lines(loess.smooth(uu,yy),col="red") 
> abline(h=0, col="grey") 

 

The smoother deviates from the horizon, and there is quite a clear kink in the 
relation. It seems as if the residuals for low and high ATM (resp. fitted) values tend 
to be positive, and negative for medium ATM values. If that was the case, it would 
be a violation of the [ ] 0iE E   assumption; and the straight line is not the correct 
fit. The question is if the observed deviation is systematic, or just random. We 
postpone this discussion to later. For the moment, we keep in mind that some 
doubts are raised by this residual plot, but continue with developing theory. The 
constant variance assumption can also be judged from the above plot. It seems as 
if the scatter is more or less constant for the entire range of ATM values. Or 
maybe better: there is no obvious violation.  
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We proceed to checking if the residuals follow a Gaussian distribution. This can be 
done with a so-called Normal Plot, sometimes also named QQ-Plot, where the 
ordered residuals are shown versus quantiles of the Gaussian distribution. The 
data must more or less follow a straight line. This is sufficiently met here in our 
case; the residuals are even slightly short-tailed with respect to the Gaussian. An 
in-depth discussion about what still fits within the assumption and what does not is 
again postponed to later. 

> qqnorm(residuals(fit)) 
> qqline(residuals(fit)) 

 

One last assumption has not been verified yet, namely the one whether the errors 
are uncorrelated. In many regression problems, this is the most difficult to verify. 
Also here, we could ask ourselves whether events such as the 9/11 terror attacks, 
or the SARS lung disease might have unduly influence. They could have led to 
back-to-back months with lower seat load factors, thus less passengers than 
expected by the air traffic movements during normal periods, and by this induce 
correlated errors. Because none of these events falls within our period of 
observation, we do not pursue the issue here. It will be addressed in detail when 
we talk about multiple linear regression. 

2.3.5 History of Least Squares 

You may find it somewhat arbitrary that we chose the sum of squares residuals as 
the criterion to minimize. We might as well optimize the absolute values’ sum of 
the residuals, the so-called 1L -regression. There are a number of reasons to prefer 
the former. The first one lies in history, least squares was simply the first such 
algorithm that was used in practice. The English Wikipedia site on the term least 
squares holds the following information: 
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On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the dwarf 
planet Ceres and was able to track its path for 40 days before it was lost in the 
glare of the sun. Based on these data, astronomers desired to determine the 
location of Ceres after it emerged from behind the sun without solving the 
complicated Kepler's nonlinear equations of planetary motion. The only predictions 
that successfully allowed relocating Ceres were those performed by the 24-year-
old Carl Friedrich Gauss using the least squares algorithm. 

Gauss did not publish the method until 1809, when it appeared in volume two of 
his work on celestial mechanics, together with a mathematical optimality result, the 
Gauss-Markov theorem (see below). In the meantime, the OLS algorithm was 
independently formulated by Adrian Marie Legendre, who was the first to publish it 
in 1806 as an appendix to his book on the paths of comets. Below, see a table of 
Piazzi’s observations, and portraits of Gauss (left) and Legendre (right).  

 

 

 

 

 

 

Was it by coincidence that OLS was invented first? The answer is no: the quality 
function ( , )Q    is differentiable, so that a unique solution can be found and written 
in explicit form. This is not possible with 1L -regression, because the absolute value 
function is not continuously differentiable. While this problem can nowadays be 
circumvented with numerical methods, this was not yet feasible at the beginning of 
the 19th  century. The reason why OLS is still popular today is because there are 
mathematical optimality results, and because under Gaussian errors, the exact 
distribution of the estimated coefficients and a number of test statistics is known. 

2.3.6 Mathematical Optimality of OLS 

The main result is the Gauss-Markov theorem (GMT) that dates back to 1809: 

Under the model assumptions from section 2.3.3 (zero expected value, 
constant variance and uncorrelatedness for the errors), the OLS estimates 

0 1
ˆ ˆ,   are unbiased (i.e. 0 0

ˆ[ ]E    and 1 1
ˆ[ ]E   ). Moreover, they have 

minimal variance among all unbiased, linear estimators, meaning that they 
are most precise. Please note that Gaussian errors are not required. 

This theorem does not tell us to use OLS all the time, but it strongly suggests 
doing so if the assumptions are met. In cases where the errors are correlated or 
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have unequal variance, we will do better with other algorithms than OLS. Also, 
note that even though normality is not required for the GMT, there will be non-
linear or biased estimates that do better than OLS under non-Gaussian errors. 

As we have seen just before, the regression coefficients are unbiased if the 
assumptions from section 2.3.3 are met. It is also very instructive to study the 
variance of the estimates. It can be shown that: 

2
0 2

1

1ˆ( )
( )

E n

ii

x
Var

n x x
 



 
   
  

, and 

2

1 2

1

ˆ( )
( )

E
n

ii

Var
x x







. 

These results also show how a good experimental design can help to improve the 
quality of the estimates, or in other words, how we can obtain a more precisely 
determined regression line. Namely: 

- we can increase the number of observations n . 
- we have to make sure that the predictors ix  scatter well. 
- by using a suitably-chosen predictor, we can keep 2

E  small. 
- for 0̂  it helps, if the average predictor value x  is close to zero. 

If the errors are Gaussian, then 0 1
ˆ ˆ,   are normally distributed, too. With their 

expectation and variance specified as above, the distribution is fully known. 
Additionally, the OLS solution is also the maximum likelihood estimator under 
Gaussian errors. Some further useful properties of the OLS solution (that are 
independent of the error distribution) are: 

- the regression line runs through the center of gravity ( , )x y . 
- the sum of residuals adds up to zero: 0ir  . 

The last property also implies that the mean value of the residuals is always zero. 

2.3.7 Estimating the Error Variance 

Besides the regression coefficients, we also need to estimate the error variance. It 
is a necessary ingredient for all tests and confidence intervals. The estimate is 
based on the residual sum of squares (abbreviation: RSS). 

 2 2

1

1
ˆ ˆ( )

2

n

E i i
i

y y
n




  
 

 

In the R summary, an estimate for the error’s standard deviation ˆE  is given as the 
Residual standard error.  
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2.4 Inference 

The goal in this section is to infer the response-predictor relation with performance 
indicators and statistical tests. Note that except for 2.4.1, the assumption of 
independent, identically distributed Gaussian errors is central to derive the results. 

2.4.1 The Coefficient of Determination 

An intuitive way of measuring the goodness-of-fit of a simple linear regression 
model is with the coefficient of determination 2R , also called multiple R-squared. It 
measures which portion of the total variation is accounted for by the regression. 

 

If we needed to predict the Pax number without any knowledge of the ATM value, 
the best guess is the average number of passengers over the last two years. The 
scatter around that prediction is visualized by the blue arrow. However, since we 
know ATM and the regression line, we can come up with a more accurate 
forecast. The then remaining scatter is indicated by the orange arrow. It is obvious 
that the regression line is more useful, the smaller the orange arrow is compared 
to the blue. This can be measured by taking one minus the quotient of the two: 

 

2

2 1

2

1

ˆ( )
1 [0,1]

( )

n

i i
i
n

i
i

y y
R

y y






  






 

In the numerator, the orange arrow is represented by the scatter of the data points 
around the fitted values, i.e. the RSS. The denominator has the scatter of the data 
points around their mean. This is the total sum of squares (TSS). 
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The maximum value is 2 1R  . It is attained if all data points are on the regression 
line. The other extreme case is 2 0R   and means that the blue and orange arrows 
have the same size. Then, the regression line is flat ( 1̂ 0  ) and does not have 
any explanatory power. The actual value can be read from the R summary: 

> summary(fit) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

The result here is 2 0.9487R  , thus most of the variation in the Pax variable is 
explained by ATM. It is important to note that for simple linear regression, 2R  is 
equal to the squared Pearson correlation coefficient between predictor and 
response. Moreover, the summary reports the adjusted R-squared. Its value is 
always smaller but usually close to 2R , because: 

 
2

2 2 1

2

R
aR R

n


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
. 

An important question is now: what is a good value for 2R ? Unfortunately, it 
remains without an answer. There are no general guidelines as to which value 
needs to be met for a regression to be useful, and there are no formal tests for 2R . 
The issue will be addressed in section 2.4.3, though. 

2.4.2 Confidence Interval for the Slope 

The estimated slope 1̂  is a random variable and has variability. If the assumptions 
for the OLS algorithm are met, we have the Gauss-Markov theorem telling us its 
value will be close to the truth 1 , but not right there. Also, the value 1̂  was 
computed from a sample. Had we had a different one, or would we just omit one 
single data point from our current one, 1̂  would turn out different. The goal is to 
reflect that uncertainty with a 95% confidence interval (CI). The formula is: 

 
1̂

1 0.975; 2
ˆ ˆnqt


   , resp. 2 2

1 0.975; 2 1
ˆ ˆ ( )

n

n E ii
qt x x  

   ,  

where 0.975; 2nqt   is the 97.5% quantile of Student’s t-distribution with 2n  degrees 
of freedom. The colloquial interpretation is that the interval holds all values which, 
besides the point estimate 1̂ , are plausible for 1 . In R, one types: 

> confint(fit, "ATM") 
       2.5 %  97.5 % 
ATM 124.4983 153.025 
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We estimated the increase in passengers per additional air traffic movement as 

1̂ 138.8  . That is the best guess given the data, but values between 124.5 and 
153.0 are also plausible. This reflects the uncertainty and variability in our 
regression analysis. If the 95%-CI seems unacceptably wide, all we can do is 
trying to bring 

1̂

ˆ


  down, i.e. have more or better data, see section 2.3.6. 

2.4.3 Testing the Slope 

For finding out whether an arbitrary value b  is plausible for the slope, we can 
check whether it is contained in the 95%-CI from above. Alternatively, there is a 
test for the null hypothesis 0 1:H b  . The most popular variant is 0 1: 0H   : this 
is asking if the slope could be zero, which would mean that the regression line 
runs horizontally and the predictor x  has no influence on the response y . The 
natural goal is to reject the null for gaining evidence that the relation between y  
and x  exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 

 
0 1
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Student’s t-distribution with 2n  degrees of freedom can be used to determine 
acceptance and rejection regions, as well as the p-value. In fact, both the test 
statistic (t value) and the p-value (Pr(>|t|)) for 0 1: 0H    are routinely given 
in the R summary output: 

> summary(fit) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

We have very strong evidence for 1 0   here, and thus the null hypothesis is 
rejected with a p-value of 151.1 10 . The fact of rejection was already clear from the 
95%-CI which contains all null hypotheses that are not rejected – and zero was not 
therein – with a huge margin, that is, and hence the extreme p-value. 

The very same p-value of 151.1 10  appears again in the last line of the summary 
output. While it is numerically identical, it is the answer to a different (but 
mathematically equivalent) question: namely, if we have evidence whether the 
regression is any good. For appreciating this, you need to remember that there 
was no formal test for 2R . It is not required, because we can always test the null 
hypothesis 0 1: 0H    which clearly answers the usefulness of the regression line. 
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2.4.4 Testing the Intercept 

In many simple linear regression problems, theory dictates that we have a 
response of 0y   whenever 0x  . That is the case with the Zurich Airport Data, 
too. If there were no air traffic movements, we would not see any passengers. 
However, it is hardly ever a good idea to fit a model without an intercept term. This 
forces the regression line to go through the origin which is a very strong restriction, 
that in most cases leads to a poor fit. 

Commonly, the reason for the poor fit is because the data points are far off 0x  . 
This leads to very high leverage with respect to 0 , and just some slight non-
linearity between response and predictor results in an intercept that is markedly 
different from zero. This happens in our example where 0

ˆ 1'197'682   . In 
analogy to sections 2.4.2 and 2.4.3, tests and confidence intervals for 0  exist. For 
the Zurich Airport data, the null hypothesis 0 0: 0H   is strongly rejected with a p-
value of 87.9 10 , and the confidence interval is: 

> confint(fit, "(Intercept)") 
               2.5 %    97.5 % 
(Intercept) -1513786 -881578.2 

However, both test and confidence interval for 0  are of relatively low practical 
importance. As a general rule, we should not fit regression models without an 
intercept term. If the null is not rejected and thus zero is a plausible value, it is still 
better and safer to keep it in the model. If it turns out to be significantly different 
from zero, take it as evidence for either some non-linearity or calibration errors in 
the data. In these latter cases, the results will be clearly worse (i.e. strongly 
biased) without the intercept. 

2.5 Prediction 

One of the primary goals with linear regression is to generate a prediction for y , 
given the value of x . The result is the conditional expectation for y  given x : 

 0 1
ˆ ˆˆ[ | ]E y x y x     

For 24‘000 air traffic movements, we expect 1'197'682 24'000 138.8 2'133'518     
passengers. Please note that only a prediction within the range of x -values that 
were present for fitting is sensible. This is called interpolation. On the other hand, 
extrapolation, i.e. a prediction beyond the boundaries of the x -values previously 
observed, has to be treated with great care: there is no guarantee that the 
regression line holds in non-observed regions of the predictor space. Thus, we 
must not predict the Pax figure for ATM values such as 50’000, 5’000 or 0. 

In R, we can obtain the fitted values for the training data points by just typing 
predict(fit). If we want to use the regression line for forecasting with new 
x -values, they have to be provided in a data frame, where the column(s) are 
named equally to the predictor(s): 
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> fit <- lm(Pax ~ ATM, data=unique2010) 
> dat <- data.frame(ATM=c(24000))  
> predict(fit, newdata=dat) 
1 2132598 

2.5.1 Confidence Interval for the Regression Line 

As we had seen above in section 2.4.2, the regression coefficients are random 
variables. Thus, also the regression line is a random variable, and might have 
turned out to be different with another sample (even if from the same population). 
Thus, it is important to understand, quantify and visualize the variability of the fitted 
value. This is done on the basis of a 95%-CI for the conditional expectation. The 
formula is: 

 95%-CI for [ | ]E y x : 
2

0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ
( )

n E n

ii

x x
x qt

n x x
  




    


 

The formula itself is of relatively little importance for the practitioner, because that 
functionality is pre-existing in R. The syntax is: 

> predict(fit, newdata=dat, interval="confidence") 
           fit     lwr     upr 
     1 2132598 2095450 2169746 

2.5.2 Prediction Interval for Future Data Points 

While the above 95%-CI tells characterizes the variability in the fitted value, it does 
not tell us where the (future) y -value will be, i.e. what number of passengers we 
will observe for a given ATM value. The reason is that (also within the training 
data), the observed y -values scatter around the regression line (i.e. their 
conditional expectation). Taking this into account, we can derive a 95% prediction 
interval (PI) for y . The formula is: 

 95%-PI for y : 
2

0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ 1
( )

n E n

ii

x x
x qt

n x x
  




     


 

The difference in the formula is that another unit of ˆE  is included to account for 
the scatter of the data points around the regression line. Again, the formula is 
implemented in R: 

> predict(fit, newdata=dat, interval="prediction") 
           fit     lwr     upr 
     1 2132598 2003343 2261853 



Applied Statistical Regression  2 Simple Regression 
 

 Page 25 

2.5.3 Visualizing Confidence and Prediction Intervals 

It is very instructive to compute point-wise CIs and PIs and to display them in the 
xy -scatterplot, along with the regression line. There is no straightforward 
procedure in R to do so, but some rather tedious handwork is required. A possible 
solution is as follows: 

> dat  <- data.frame(ATM=seq(18000, 26000, length=200)) 
> ci   <- predict(fit, newdata=dat, interval="confidence") 
> pi   <- predict(fit, newdata=dat, interval="prediction") 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Pax vs. ATM with 95%-CI and 95%-PI") 
> lines(dat$ATM, ci[,2], col="green") 
> lines(dat$ATM, ci[,3], col="green") 
> lines(dat$ATM, pi[,2], col="blue") 
> lines(dat$ATM, pi[,3], col="blue") 
> abline(fit, col="red", lwd=2) 

The result is a confidence region for the regression line, and a prediction region for 
future observations. The interpretation is that the former contains all plausible 
regression lines. The latter indicates how precisely we can forecast future 
observations. 

While the 95%-CI turns out to be rather small here, reflecting a high confidence in 
the estimated regression line, the 95%-PI is bigger an reflects the non-understood 
scatter of the observations due to reasons that were not considered in our 
regression analysis, i.e. differing seat loads factors, cargo flights, etc. 
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2.6 Model Extensions 

So far, linear regression was synonym to fitting a straight line in an xy -scatterplot. 
However, it has to offer much more: we can also fit curves, as long as we can 
describe them with a relation that is linear in the regression coefficients. The 
following example motivates why fitting curves can be a necessity. 

2.6.1 Example: Automobile Braking Distance 

An automobile magazine tests summer tires with respect to the braking 
performance that is achieved. For acquiring data, a set of 26 test drives are made, 
where at various speeds the stopping distance is measured after a “pedal-to-the 
metal” braking procedure. The goal is to estimate the deceleration parameter. 

obs speed brdist 
1 19.96 1.60 
2 24.97 2.54 
3 26.97 2.81 
4 32.14 3.58 
5 35.24 4.59 
6 39.87 6.11 
7 44.62 7.91 
8 48.32 8.76 
9 52.18 10.12 

10 55.72 11.62 
11 59.44 13.57 
12 63.56 15.45 
... ... ... 
24 111.97 51.09 
25 115.88 50.69 
26 120.35 57.77 

Apparently, the relation between braking distance and speed is not a straight line. 
This is not surprising, as it is well known from physics that the energy and thus the 
braking distance go with the square of the speed, i.e. at double speed it takes four 
times as long to standstill. Moreover, there is some variability in the data. It is due 
to factors that have not been taken into account, mostly the surface conditions, tire 
and brake temperature, head- and tailwind, etc. 

 

 

20 40 60 80 100 120

0
1

0
2

0
3

0
4

0
5

0
6

0

Speed [km/h]

B
ra

ki
n

g
 D

is
ta

n
ce

 [
m

]

Braking Distance vs. Speed



Applied Statistical Regression  2 Simple Regression 
 

 Page 27 

 

Fitting a plain linear function, i.e. laying a straight line through the data points 
would result in a poor and incorrect fit. We have a systematic deviation from the 
regression line, and the Tukey-Anscombe plot shows a strong violation of the zero 
error assumption. As a way out, we better fit a quadratic function: 

2
0 1i i iBrDist Speed E     , respectively 

0 1i i iY x E      , where 2 2
i i ix x Speed    

The above model still is a simple linear regression problem. There is only one 
single predictor, the coefficients 0 1,   enter linearly and can be estimated with the 
OLS algorithm. Owing to the linearity, taking partial derivatives still works as usual 
here, and an explicit solution for 0 1

ˆ ˆ,   will be found from the normal equations. 
In R, the syntax for fitting the quadratic function is as follows: 

> fit.q <- lm(brdist ~ I(speed^2)) 

When using powers as predictors, we should always use function I(). It prevents 
that the power is interpreted as a formula operator, when it in fact is an arithmetic 
operation that needs to be performed on the predictor values. It is important to 
note that the quadratic relation can either be interpreted as a straight line in a 
y  vs. 2x  plot, or as a parabola in a regular y  vs. x  scatterplot. The following code 
can be used for visualizing the result: 

> ## Braking Distance vs. Speed^2 
> plot(speed^2, brdist, main=”...”) 
> abline(fit.q, col="red", lwd=2) 
>  
> ## Braking Distance vs. Speed 
> yy <- predict(fit.q, newdata=data.frame(speed=10:130)) 
> plot(speed, brdist, main=”...”) 
> lines(10:130, yy, col="red", lwd=2) 
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As it seems at first impression, the parabola yields a good fit to the braking 
distance data. The regression coefficients can be used to estimate the 
acceleration which turns out to be roughly 10 /m s . Some drawbacks of this model 
will be pointed out later. 

2.6.2 Curvilinear Regression 

From the automobile example, we conclude that simple linear regression is more 
than just fitting straight lines. In fact, any curvilinear relation can be fitted, e.g.: 

 •   0 1 ln( )y x E      

 •   0 1y x E      

 •   1
0 1y x E      , 

All these models, and many more, can be rewritten in the form 0 1y x E     , 
where the predictor is either ln( )x x  , x x   or 1x x  . Thus, estimating the 
parameters 0 1,   can be reduced to the well-known simple linear regression 
problem, for which the OLS algorithm can be used. While this may sound like the 
ideal solution to many regression problems, it is not, for a number of reasons. 

First, when the residuals from the quadratic model are plotted versus predictor 
speed, it turns out that the situation is far less than optimal. Clearly apparent is a 
violation of the constant error-variance assumption. That is not so surprising, even 
without looking at the data; we might have expected that the scatter in braking 
distances becomes bigger as the speed increases. This is problematic because 
the high speed observations so (implicitly) obtain more weight in determining the 
regression coefficients. Consequently, we observe a bias for the low speed 
braking distances, because OLS focuses on the data points with large residuals on 
the right hand side, but puts less emphasis on what is going on at lower speeds. 
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> plot(speed, resid(fit.q)) 
> title("Residuals vs. Speed with LOESS Smoother") 
> smoo <- loess.smooth(speed, resid(fit.q)) 
> lines(smoo, col="red") 
> abline(h=0, col="grey") 

 

Thus, while at first the parabola seemed to fit well to the data, closer inspection 
shows that we have not found a very good solution yet. Unfortunately, that is often 
the case when just single power terms are used as predictors. 

2.6.3 Example: Infant Mortality 

Our next goal is to study how infant mortality in a country depends on its wealth. 
We have observations from 105 countries; the data were first published in the New 
York Times in 1975. The infant mortality is measured as the (average) number of 
1000 live born babies that do not reach the age of 5 years. The living standard is 
given as per-capita income in US$. They data are accessible in R’s 
library(car) as data(Leinhardt). For clarity, we remove four countries with 
partly missing values and two outliers: Saudi Arabia and Lybia, both oil-exporting 
countries with an inhomogeneous population consisting of a few very rich leaders 
and mostly poor population. The data can be displayed in a scatterplot: 

> plot(infant ~ income, data=im, pch=20) 
> title("Infant Mortality vs. Per-Capita Income") 

Since the relation between mortality and income seems to be inversely 
proportional, we might try a curvilinear regression model of the form: 

 1
0 1~ ( )infant income E      
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As explained in 2.6.2, this is a simple linear regression problem where we can 
estimate the coefficients with OLS. The result is added to the scatterplot. 

> fit <- lm(infant ~ I(income^-1), data=im) 
> xx  <- data.frame(income=seq(0, 6000, length=200)) 
> yy  <- predict(fit, newdata=xx, interval="prediction") 
> lines(xx$income, yy[,1], col="red", lwd=2) 
> points(infant ~ income, data=im, pch=20) 

 

The resulting fit is poor, as the infant mortality is strongly overestimated in all rich 
countries. One might conclude that this is because we failed to identify the correct 
exponent for the income variable. Rather than just trying a few different powers, 
we might be tempted to estimate it from data, with a model such as: 

2
0 1y x E      

That however, is no longer a relation that is linear in the parameters. Least 
squares fitting, i.e. taking partial derivatives in the quality function will not lead to a 
linear equation system, because the result is of more complicated form. 

2.6.4 The log-log Model 

In the above example, we are looking for a viable alternative to solve the 
regression problem. We could (and potentially would) resort to a numerical 
solution for minimizing the RSS, if there was not a much better analytical solution 
that is based on a simple, yet very powerful trick. The transformation 

 log( ), log( )y y x x    

is of great help, as we can see with a scatterplot in the log-log scale: 
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> plot(log(infant) ~ log(income), data=im, pch=20) 
> title("log(infant) vs. log(income)") 
> fit <- lm(log(infant) ~ log(income), data=im) 
> abline(fit, col="red", lwd=2) 
> plot(fitted(fit), resid(fit), pch=20) 
> abline(h=0, col="grey") 
> smoo <- loess.smooth(fitted(fit), resid(fit)) 
> lines(smoo, col="red") 
> title("Residuals vs. Fitted Values") 

 

After the variable transformations, the relation seems to be a straight line. The 
OLS regression line fits the data well, and the Tukey-Anscombe plot does not 
show strongly violated assumptions, except for a maybe slightly non-constant 
variance (that we accept here). What has happened? If a straight line is fitted on 
the log-log-scale, i.e.: 

 0 1y x E          where log( ), log( )iy y x x    

we can derive the relation on the original scale by taking the exponential function 
on both sides. The result is as follows: 

 1 1
0 0exp( ) exp( )y x E x E         , with 0 0exp( )   and 1 1  . 

The slope from the log-log-scale is the exponent to x  on the original scale. 
Moreover, we have a multiplicative rather than an additive model, where the error 
term follows a log-normal distribution. Hence, the errors will scatter more the 
bigger x  is, and are skewed towards the right, i.e. bigger values. While this model 
may seem arbitrary, it fits well in many cases, even more often than the canonical, 
transformation-free approach. The coefficients are: 

> lm(log(infant) ~ log(income), data=im) 
Coefficients: 
(Intercept)  log(income)   
     7.4134      -0.5661   
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The interesting part is the interpretation of the model equation. It is relative, in the 
following way: if x , i.e. the income increases by 1% , then y , i.e. the mortality 
decreases by 1̂ 0.56%  . In other words, 1  characterizes the relative change in 
the response y  per unit of relative change in x . 

For obtaining predictions of the infant mortality, we can use the regression model 
on the transformed scale, and then just re-exponentiate to invert the log-
transformation: 

 ˆ ˆexp( )y y  

However, some care is required: due to the skewness in the lognormal distribution, 
the above is an estimate for the median of the conditional distribution |y x , but not 
for its mean [ | ]E y x . Often, the difference is small and can be neglected. However, 
in cases where we unbiased estimation is key, we can use a correction factor. 

 2ˆ ˆ ˆexp( / 2)Ey y    

> ## Predictions 
> po  <- exp(predict(fit)) 
> poc <- exp(predict(fit)+(summary(fit)$sigma^2)/2) 
>  
> ## Scatterplot with Fitted Curves 
> plot(infant ~ income, data=im, pch=20) 
> lines(sort(im$income), po[order(im$income)], col="red") 
> lines(sort(im$income), poc[order(im$income)], col="orange") 

 

Owing to the exponential back-transformation, the fit on the original scale cannot 
take negative values. This is another aspect that here strongly speaks for fitting on 
the log-log-scale. A model that predicts negative values for infant mortality would 
not be plausible in practice. 
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For the confidence and prediction intervals, we can simply compute these as usual 
on the transformed scale. Simple re-exponentiating brings them back to the 
original scale. There is no need for a correction factor as we are dealing with 
quantiles of the respective distributions: 

 [ , ] [exp( ),exp( )]l u l u  

Again, an important advantage of the log-log-model is that neither of these 
intervals does take negative values on the original scale. Moreover, they are no 
longer symmetric, reflecting the fact that there is more room for error towards 
bigger values, and less towards smaller errors. 

> poci  <- exp(predict(fit, interval="confidence")) 
> popi  <- exp(predict(fit, interval="prediction")) 

 

2.6.5 Dealing with Zero Values 

Because the logarithm is defined for strictly positive values , 0x y   only, we can 
run into trouble while trying to fit the log-log model to data. Some basic rules: 

 For predictor/response variables that take negative values, the log-
transformation, and hence the log-log model is typically not suitable. 

 If either 0y   or 0x   appears, the log-transformation is still not possible. 
Do not exclude these data points from the analysis, this leads to a 
systematic error. One can though additively shift the variable: x x c   

 The usual choice for the constant is 1c  . However, this makes the 
regression model no longer invariant versus scale transformations. Thus, it 
is better (and recommended) to set c  to the smallest value 0 . 
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2.6.6 The Logged Response Model 

This far, we considered log-transformations for both variables, as well as for the 
predictor only. If one sees this as a trick, rather than having a specific model 
formulation in mind, we might try to work with a logged response but the original 
predictor. As it turns out, also this model is widely used and accepted in practice. 
We illustrate it with the following example: 

 

The data originate from a research project of the author. The goal was to study the 
daily cost in neurological rehabilitation. In seven hospitals, a random sample of 
473 patients was studied, most of whom were originally suffering from 
craniocerebral injuries or apoplectic strokes. The total (time) effort for care, 
therapy and medical examinations was measured, expressed as CHF/day and 
serves as the response variable. Also, for each patient an ADL assessment was 
taken. It is based on about 20 items that quantify the autonomy of a patient in the 
activities of daily life, i.e. personal hygiene, feeding, etc..  

Above, the data are visualized in a scatterplot. A simple linear regression model 
had been fitted, along with a Tukey-Anscombe plot for judging the quality of the fit. 
At first impression, the straight line does not fit too badly, but a closer inspection 
shows that there is a bias (i.e. non-zero expectation for the error), and a right-
skewed error distribution. These are strong model violations, and thus, the simple 
linear model yields a poor explanation of the daily rehabilitation cost. As a way out, 
we suggest to log-transform the response variable, but to leave the predictor as is: 

 log( ),y y x x    

This simple trick yields a good fit, see below. Also, we will soon outline that the 
log-transformation is indicated for any right-skewed variable such as cost, whereas 
the uniformly distributed ADL predictor does not require action. The model is: 

 0 1log( )y y x E      , respectively, 
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if we back-transform such that the response is on the original scale: 

 0 1exp( ) exp( ) exp( )y x E    . 

This is a multiplicative model. In contrast to the log-log model, 1  is not an 
exponent controlling the curvature, but only a scale parameter to the predictor. 
The usual assumption for the error is 2~ (0, )EE N  , and thus, we again have a 
multiplicative lognormal error term on the original scale. This results in right-
skewed scatter that increases with increasing daily cost, matching what we 
observe in the data. The interpretation is as follows: an increase by one unit in the 
predictor x  multiplies the fitted value by 1exp( ) . In our case, one additional ADL 
point, meaning less autonomy of the patient, increases the cost on average by 
2.36%. We then display fit, diagnostics and prediction interval: 

> lm(log(cost) ~ adl, data=rehabilitation) 
 (Intercept)          adl 
    5.75106      0.02331 
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It turns out that after the transformation, a straight line provides a reasonable fit. 
Still, the Tukey-Anscombe plot exhibits a slight bias. The residuals follow a 
symmetric, but prominently long-tailed distribution. Hence, not all assumptions for 
OLS fitting are 100% fulfilled, but the situation is already much, much better than 
previously, with .daily cost vs ADL . Moreover, there are no more simple tricks or 
transformations with which we could improve the model further. 

As a side note, we remark that further model improvement is possible here by 
using advanced methods such as Box-Cox transformations, or a generalized linear 
model based on the Gamma distribution. These topics are (far) beyond the scope 
of this introductory section on simple linear regression and thus not discussed 
here. It is also important to mention that while they are beneficial to the quality of 
the prognosis interval and the parameter tests, they do not improve the precisions 
of the point forecasts much. 

2.6.7 First-Aid Transformations 

From the above examples, it is evident that variable transformations lead to novel 
predictor-response relations, often strongly improve the fit and are of tremendous 
importance to many applied regression problems. Thus, when and how to 
transform? Long-time practical experience has led to a few simple guidelines, the 
so-called first-aid transformations that date back to John Tukey. 

 log-transformation: log( )x x  , and also log( )y y   

This transformation is a must for predictor and/or response variables that 
can only take positive values, i.e. absolute values and concentrations. 
Often, the marginal distribution of these variables is skewed to the right. 
Vice versa, the log-transformation tends to be highly beneficial for any 
variable that is strongly right-skewed. While for count variables, the square-
root transformation would be natural (see below), they are, due to the more 
straightforward model interpretation, often just log-transformed, usually with 
good empirical results. 

2.6.8 Final Considerations 

By reflecting the previous examples, we notice that in the Leinhardt data both 
infant mortality and income are right-skewed variables which only take positive 
values. Thus, a log-transformation needs to be considered for both, and as the 
results from section 2.6.4 show, yields good results. Moreover, the daily cost in 
neurological rehabilitation is right-skewed and positive, while the predictor ADL is 
not. Hence only the response was log-transformed, again with good outcome.  

Finally, we turn our attention back to the Zurich Airport example. One aspect is 
that the residual plots in section 2.3.4 raised some doubts whether the straight line 
is a trustworthy result. And then, both Pax and ATM are positive variables what 
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makes them candidates for a transformation. We here prefer to take logs but not 
square roots, the reason being the clearer model interpretation: 

 log( ), log( )ATM ATM Pax Pax    

The result no longer corresponds to a straight line into the scatterplot, but a curve. 
Additionally, the increase in Pax is no longer linear with ATM, but relative. The 
code for fitting the model and producing a scatterplot is: 

> fit        <- lm(Pax ~ ATM, data=unique2010) 
> fit.log    <- lm(log(Pax) ~ log(ATM), data=unique2010) 
> fit.y.orig <- exp(fitted(fit.log)[order(unique2010$ATM)]) 
>  
> plot(Pax ~ ATM, data=unique2010, main=”...”) 
> lines(sort(unique2010$ATM), fit.y.orig, col="blue") 
> abline(fit, col="red") 

 

The difference between the two solutions seems to be minimal. Still, the variable 
transformations improve, as we can see from the residual plots: 

> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> plot(xx, yy, xlab="ATM", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 
> xx <- log(unique2010$ATM) 
> yy <- residuals(fit.log) 
> plot(xx, yy, xlab="log(ATM)", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 
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The log-log-model manages to reduce the bias of the plain linear one, although 
there is still some kink in the residuals. But the log-log-model has another 
attractive point: it does no longer predict negative Pax values - though that does 
not mean it is safe for extrapolation! The coefficients are: 

> lm(log(Pax) ~ log(ATM), data=unique2010) 
 
Coefficients: 
(Intercept)     log(ATM)   
     -2.116        1.655   

Thus, the fitted relation corresponds to: 

1.655exp( 2.116)y x   , resp. 1.6550.120Pax ATM   

So, if ATM increases by 1%, then Pax increases by 1.655%. That is at least as 
plausible as an increase of 138.8 passengers per additional flight, because it is 
well known that the seat load factor is higher and bigger airplanes are used in 
busy times with more air traffic movements. 
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3 Multiple Linear Regression 
It is very rare that the variation in a response variable y  is due to one single 
predictor only. Even for the relatively trivial Pax vs. ATM example, the amount of 
cargo that is handled may play an important role, too. For the other examples that 
were considered in section 1.1, the dependency on several input variables was 
clearly pointed out. We will now address the methodology for estimating multiple 
linear regression models where: 

 0 1 1 ... p py x x E       . 

We will continue using OLS for estimating the coefficients 0 ,..., p  . However, a 
number of new issues arise here; the most important perhaps being the fact that 
visualizing the relation is no longer easily possible. Thus, understanding the input 
and output becomes an important and challenging task. 

3.1 Example: Air Pollution and Mortality 

Since the beginning of the environmental movement, attention has focused on the 
protection of human health. Soon, air pollution was identified as a major threat to 
well-being. Therefore, researchers at General Motors collected data on 59 US 
Standard Metropolitan Statistical Areas for a study whether air pollution 
contributes to the age-adjusted mortality of the population. The apm dataset 
includes predictors measuring demographic characteristics of the cities, variables 
measuring climate parameters and finally three records for the air pollution in the 
ambient air: concentrations of hydrocarbons ( HC ), nitrous oxide ( xNO ) and sulfur 
dioxide ( 2SO ). An excerpt of the data is as follows: 

 

Most of the variables are self-explanatory: the temperatures are averages in 
degrees Fahrenheit, humidity is a percentage, the rainfall is given as annual sum 
in inches, education is the median number of years in the population, which itself 
is given as an absolute number, as well as a density per area and housing unit. 
Moreover, we have the percentages of non-white inhabitants and white collar 
workers, the median per-capita income and finally the concentrations of the 
pollutants. 

City Mortality JanTemp JulyTemp RelHum Rain Educ Dens NonWhite WhiteCllr Pop House Income HC NOx SO2
Akron, OH 921.87 27 71 59 36 11.4 3243 8.8 42.6 660328 3.34 29560 21 15 59
Albany, NY 997.87 23 72 57 35 11.0 4281 3.5 50.7 835880 3.14 31458 8 10 39
Allentown, PA 962.35 29 74 54 44 9.8 4260 0.8 39.4 635481 3.21 31856 6 6 33
Atlanta, GA 982.29 45 79 56 47 11.1 3125 27.1 50.2 2138231 3.41 32452 18 8 24
Baltimore, MD 1071.29 35 77 55 43 9.6 6441 24.4 43.7 2199531 3.44 32368 43 38 206
Birmingham, AL 1030.38 45 80 54 53 10.2 3325 38.5 43.1 883946 3.45 27835 30 32 72
Boston, MA 934.70 30 74 56 43 12.1 4679 3.5 49.2 2805911 3.23 36644 21 32 62
Bridgeport, CT 899.53 30 73 56 45 10.6 2140 5.3 40.4 438557 3.29 47258 6 4 4
Buffalo, NY 1001.90 24 70 61 36 10.5 6582 8.1 42.5 1015472 3.31 31248 18 12 37
Canton, OH 912.35 27 72 59 36 10.7 4213 6.7 41.0 404421 3.36 29089 12 7 20
Chattanooga, TN 1017.61 42 79 56 52 9.6 2302 22.2 41.3 426540 3.39 25782 18 8 27
Chicago, IL 1024.89 26 76 58 33 10.9 6122 16.3 44.9 606387 3.20 36593 88 63 278
Cincinnati, OH 970.47 34 77 57 40 10.2 4101 13.0 45.7 1401491 3.21 31427 26 26 146
Cleveland, OH 985.95 28 71 60 35 11.1 3042 14.7 44.6 1898825 3.29 35720 31 21 64
Columbus, OH 958.84 31 75 58 37 11.9 4259 13.1 49.6 124833 3.26 29761 23 9 15
Dallas, TX 860.10 46 85 54 35 11.8 1441 14.8 51.2 1957378 3.22 38769 1 1 1
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The task is to study how air pollution contributes to mortality. Thus, the influence of 
the three pollution variables is of primary interest. The remaining ones can be 
seen as potentially confounding factors, for which we try to correct. Since we know 
that mortality is affected by other causes than just the pollution alone, we have to 
correct for the effect of these covariates. Just studying the relation between 
mortality and pollution would lead to flawed results. Fortunately, with multiple 
linear regression we can incorporate all covariates and derive sound conclusions. 

3.2 Preparing the Data 

For simple regressions, we were able to visualize the data in an xy -scatterplot. 
This was beneficial for identifying the correct response-predictor relation, making 
variable transformations, detecting outliers and some further potential problems. In 
the present example, the data live in a 15-dimensional space, and there is no plot 
that can show them in full generality. Still, gaining an impression of the data and 
preparing them well for regression analysis is absolutely essential. 

3.2.1 Marginal Plots 

As a way out, we can visualize the univariate distribution of response and 
predictors with histograms (or barplots, should there be categorical predictors). As 
mentioned above, this does not give the full multivariate picture, but it still allows 
for detecting skewness in the variables, the presence of outliers and perhaps other 
important specialties such as missing values that are coded with numerical values. 

> par(mfrow=c(4,4)) 
> for (i in 1:15) hist(apm[,i], title=”...”) 
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What immediately catches the attention is the extreme skewness of the pollution 
variables. This needs to be addressed with variable transformations; else the 
results from a multiple linear regression will be poor. Furthermore, also the 
population is right-skewed. Apart from this, there do not seem to be too many 
peculiarities in the apm data. An analysis using the R command 

> any(is.na(apm)) 
[1] FALSE 

shows that there are no missing values coded by NA. Neither do we have any 
suspicions that they might be coded by some numerical value. If that was the 
case, we urgently need to clarify the issue, and set the respective values to NA. 
Besides the histograms, one could also do scatterplots of the response variable 
vs. each of the predictors (or boxplots, in case of categorical predictors). Again, 
this does not visualize the multivariate setting in full depth, and is mostly less 
useful than the histograms shown above. 

3.2.2 Variable Transformations 

Regression results will be much easier to understand if the data are in units that 
we are well familiar with. In the context of the mortality example that means 
converting the temperatures to degrees Celsius rather than Fahrenheit, and 
rainfall in /cm year  rather than /inches year . We copy the original data frame, 
generate the new variables and drop the old ones: 

> apm$JanTemp  <- (5/9)*(apm$JanTemp-32) 
> apm$JulyTemp <- (5/9)*(apm$JulyTemp-32) 
> apm$Rain     <- (2.54)*apm$Rain 

All of the above are linear variable transformations of the form x ax b   . It is very 
important to notice that these do not change the regression output: all fitted 
values, tests and the prediction interval will remain identical. The only thing that 
changes is the coefficient j  and its standard error, but only to account for 
transformation that was made. 

This is clearly not the fact for non-linear transformations such as the log (or also 
the square root, the inverse, etc.): they ultimately change the regression relation 
and all results (fitted values, tests, confidence intervals, ...) will be different. The 
change is not necessarily for the bad, and thus we carry out the first-aid-
transformations that are indicated on the apm data. That includes taking log-
transformations for the three pollution variables plus the population. Most other 
predictors are annual sums or averages, show sufficiently symmetrical distribution 
and are left alone.  

Implementation-wise, we do not carry out these transformations in the data frame, 
but choose the convenient option of writing the log(Pop), log(HC), log(NOx) 
and log(SO2) terms directly into the model equation, see below. 
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3.3 Model and Estimation 

What to do with such cases, where multiple predictor variables are available? The 
poor man’s approach would be to do many simple linear regressions on each of 
the predictors separately. This has the somewhat doubtful advantage that the 
relation between each predictor and the response can be displayed in a two-
dimensional scatterplot. However, it is very important to note that doing many 
simple linear regressions is not equivalent to a multiple linear regression. The 
findings, i.e. the regression coefficients and their p-values, will generally be 
different. The only case when they are identical is if the predictors are exactly 
orthogonal; and this is almost never the case with data from observational studies. 

As indicated above, the appropriate tool for simultaneously including the effects of 
several predictors at a time is multiple linear regression. Geometrically speaking, 
one tries to fit the least squares hyperplane in the ( 1)p  -dimensional space  
( p  is the number of predictors). Generally, this fit cannot be visualized if 2p  . 
We start our discussion with a simple example that illustrates some of the 
peculiarities of multiple linear regression. 

Example 

In this artificial example, there are only 2 predictors and 8 observations. Because 
the optimal solution is obvious, we do not need to estimate the regression 
coefficients but can guess them. The data are as follows: 

Observation x1 x2 yy 

1 0 -1 1 

2 1 0 2 

3 2 1 3 

4 3 2 4 

5 0 1 -1 

6 1 2 0 

7 2 3 1 

8 3 4 2 

The optimal solution of the multiple regression problem for the above data is 

 1 22i i iy x x   for all 1,...,8i   

We are in a very special situation and have a perfect fit, thus there are no errors. 



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 43 

Because there are only two predictors plus the response, we can visualize the fit in 
a 3d-scatterplot. As we observe below, the data points lie in a plane, the 
regression plane. 

> toy.ex <- data.frame(x1=c( 0,1,2,3, 0,1,2,3), 
                       x2=c(-1,0,1,2, 1,2,3,4), 
                       yy=c( 1,2,3,4,-1,0,1,2)) 
> library(Rcmdr) 
> attach(toy.ex) 
> scatter3d(yy ~ x1 + x2, axis.scales=FALSE) 
> detach(toy.ex) 

 

To convince ourselves that single and multiple linear regression is not one and the 
same thing, we regress 1~y x  and 2~y x . We can visualize these fits in two-
dimensional scatterplots. 
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The slope estimates from the simple regressions turn out to be 1.00 and 0.11, 
respectively. Hence they are both different than the coefficients for 1x  and 2x  in 
the (perfect) solution from multiple linear regression. Moreover, we do not achieve 
a perfect fit in neither of the two simple models. Hence, for describing the variation 
in y , we need to build on both variables 1x  and 2x  simultaneously. 

3.3.1 Notation 

We turn our attention back to the mortality example in dataset apm. In colloquial 
formulation, the multiple linear regression model is as follows: 

 0 1 2 14 2... log( )i i i iMortality JanTemp JulyTemp SO E             

More generally and technically, the multiple linear regression model specifies the 
relation between response iy  and predictors 1,...,i ipx x  for observations 1,...,i n , 
including a random error term iE . The double index notation is defined as: 

 0 1 1 ...i i p ip iy x x E       , for 1,...i n . 

The term 0  is still called intercept and corresponds to the (theoretical) mortality 
value when all predictors 1 2 ... 0i i ipx x x    . The remaining parameters 1,..., p   
are, in contrast to simple regression, no longer called slope(s), but just regression 
coefficients. The interpretation is as follows: 

The regression coefficient j  is the increase in the response y  when 
predictor jx  increases by 1 unit, but all other predictors remain unchanged. 

A more convenient way of writing down a multiple linear regression model is with 
the so-called matrix notation. It is simply: 

 y X E  , with 
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The terms in this equation are called the response vector, the design matrix, the 
coefficient vector and the error vector. If a matrix multiplication is carried out and 
the result is written down, we are back with the double index notation. This also 
illustrates the role of the particular first column of the design matrix: it is the 
intercept, which is also part of multiple linear regression. 

Our next goal is to fit a multiple linear regression model. The task which needs to 
be done is to estimate the coefficient vector   from the data; in a way that the 
solution is optimal. The criterion is still to minimize the sum of squared residuals. 
The next section illustrates the concept with an example and then focuses on the 
solution plus some technical aspects. 
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3.3.2 OLS: Method & Identifiability 

For illustrating the concept of least squares regression, we consider the mortality 
data with two predictors only: NonWhite and JanTemp. The regression coefficients 
are estimated such that the sum of squared residuals is minimal. The fitted 
regression plane with the residuals looks as follows: 

> scatter3d(Mortality~NonWhite+JanTemp, axis.scale=FALSE) 

 

We observe that the mortality decreases with higher winter temperatures, and 
increases in urban regions with more non-white population. The basis for finding 
this solution lies in the residuals, which are: 

0 1 1( ... )i i i p ipr y x x       . 

Then, we choose the parameters 0 ,..., p   such that the sum of squared residuals 
is minimal. We again formulate the quality function. 

 2 2
0 1 0 1 1

1 1

( , ,..., ) ( ( ... ))
n n

p i i i p ip
i i

Q r y x x     
 

         

We need to minimize this function, which can be tackled by taking partial 
derivatives and setting them to zero. This results in the so-called normal 
equations. We do now take full advantage of the matrix notation that was 
introduced above and can write the normal equations as 

 ( )T TX X X y  . 

If TX X  is invertible (or regular), we can obtain the least squares estimates of the 
regression coefficients by some simple matrix calculus as 1ˆ ( )T TX X X y   .  
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If the regularity condition for TX X  is fulfilled, there is a unique and explicit solution 
for the regression coefficients ̂ , and thus no numerical optimization is needed. A 
side remark: in software packages, the inverse of TX X  is usually not computed 
for numerical reasons, but the computations will be based on a QR -decomposition 
or similar methods of simplifying TX X . In R, multiple linear least squares 
regression is carried out with command lm(). The syntax is as follows: 

fit <- lm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
                       Educ + Dens + NonWhite + WhiteCollar +  
                       log(Pop) + House + Income + log(HC) +  
                       log(NOx) + log(SO2), data=apm) 

As in simple linear regression, we have the response variable on the left hand 
side. It is related to the predictors on the right hand side, which are joined by ‘+’ 
signs. Note that potential log-transformations of predictors and/or response can 
directly be written into the formula, and that we need to specify the data frame 
from which the variables need to be taken.  

It is worth noting that there is a simple variant of specifying regression problems 
with many predictors in R. The notation lm(Mortality ~ ., data=apm) 
means that mortality is explained by all the other variables that exist in data frame 
apm. However, in our example these two commands will not yield identical results, 
because of the log-transformations that are missing in the short notation. Once the 
model is fitted, we can extract the regression coefficients, here rounded to two 
digits, by: 

> round(coef(fit),2) 
(Intercept)     JanTemp    JulyTemp       RelHum        Rain 
    1297.38       -2.37       -1.75         0.34        1.49 
        Educ        Dens   NonWhite  WhiteCollar    log(Pop) 
      -10.00        0.00       5.15        -1.88        4.39 
       House      Income    log(HC)     log(NOx)    log(SO2) 
      -45.74        0.00     -22.04       33.97       -3.69 

We claimed above that the normal equations have a unique solution if and only if 
TX X  is regular and thus invertible. This is the case if X  has full rank, i.e. all 

columns of the design matrix, or in other words, all predictor variables are linearly 
independent. This is often the case in practice, and whenever the full rank 
condition for X  is fulfilled, we are fine.  

On the other hand, there will also be cases where X  does not have full rank and 
TX X  is singular. Then, there are usually infinitely many solutions. Is this a 

problem? And how does it occur? The answer to the first question is “yes”. When 
the design matrix X  does not have full rank, the model is “poorly formulated”, 
such that the regression coefficients   are at least partially unidentifiable. It is 
mandatory to improve the design, in order to obtain a unique solution, and 
regression coefficients with a clear meaning. Below, we list some typical mistakes 
that lead to a singular design. 
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1) Duplicated variables 

It could be that we use a person’s height both in meters and centimeters as 
a predictor. This information is redundant, and the two variables are linearly 
dependent. One thus has to remove one of the two. 

2) Circular variables 

Another example is when the number of years of pre-university education, 
the number of years of university education and also the total number of 
years of education are recorded and included in the model. These 
predictors will be linearly dependent, thus X  does not have full rank. 

3) More predictors than cases 

Note that a necessary (but not sufficient) condition for the regularity of TX X  
is p n . Thus, we need more observations than we have predictors! This 
makes sense, because the regression is over-parameterized (or super-
saturated) else and will not have a (unique) solution. 

What does R do in non-identifiable problems? 

Generally, statistics packages handle non-identifiability differently. Some may 
return error messages; some may even fit models because rounding errors kill the 
exact linear dependence. R handles this a bit different: it recognizes unidentifiable 
models and fits the largest identifiable one by removing the excess predictors in 
reverse order of appearance in the model formula. The removed predictors will still 
appear in the summary, but all their values are NA, and a message also says 
“Coefficients: k not defined because of singularities”). While 
this still results in a fit, it is generally better in such cases to rethink the formulation 
of the regression problem, and remove the non-needed predictors manually. 

Estimation of the Error Variance 

An additional quantity that is a necessary ingredient for all tests and confidence 
intervals needs to be estimated from the data: it is the error variance 2

E . The 
estimate can be obtained by standardizing the sum of squared residuals with the 
appropriate degrees of freedom, which is the number of observations n minus the 
number of estimated parameters. With p  predictor variables and an intercept, this 
number is 1p  , and the error variance estimate is: 

 2 2

1

1
ˆ

( 1)

n

E i
i

r
n p





   . 

In the next section, we will discuss if and when the OLS results are a good 
solution. The assumptions are identical to the ones we had in simple linear 
regression, as is the main result, the Gauss-Markov theorem. By assuming a 
Gaussian distribution for the errors, we can show even more and lay the basis for 
inference in multiple linear regression. 
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3.3.3 Properties of the Estimates 

The use of the least squares procedure is attractive due to its simplicity and the 
explicit solution that can be found without any numerical optimization. Additionally, 
there are some mathematical optimality results that further justify its application. 
However, we require some conditions for being able to derive them, namely: 

[ ] 0iE E  . 

Again this means that there is no systematic error, i.e. the true relation between 
predictors and response is the linear function that we imposed. Or in other words: 
the hyper plane is the correct fit. Additionally, we require constant variance of the 
error term, i.e.  

2( )iVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations, respectively their errors, do not 
influence each other, and that there are no latent variables (e.g. time/sequence of 
the measurements) that do so. In particular, 

( , ) 0i jCov E E  for all i j .  

Under these three conditions, we can derive that the coefficient estimates are 
unbiased and find their covariance matrix. The Gauss-Markov theorem states that 
there is no other linear, unbiased estimator that is more efficient. 

 ˆ[ ]E    and 2 1( ) ( )T
ECov X X    ,  

As in simple linear regression, the precision of the regression coefficients depends 
on the design and the number of observations which are present. While the 
Gauss-Markov theorem does not require the assumption of normally distributed 
errors iE , be careful in case of clearly non-Gaussian distribution. On one hand, 
there may be non-linear estimators that are clearly more efficient than OLS, and 
even more importantly, all inference results (i.e. tests, confidence intervals, 
prediction interval) to be discussed below ultimately require independent Gaussian 
errors. Hence it is standard to also require 

 iE  i.i.d. 2~ (0, )EN   

for OLS regression. Then, and only then, the estimators for the regression 
coefficients will follow an exact Gaussian distribution, as will the distribution of the 
fitted values. The specifications are as follows: 

  2 1ˆ ~ , ( )T
EN X X     and 2 1ˆ ~ ( , ( ) )T T

Ey N X X X X X    

For error distributions that deviate from the Gaussian, we can rely on the central 
limit theorem. It tells us that asymptotically (i.e. for large samples) the normal 
distribution of the estimates will still hold. Thus, small deviations from Gaussian 
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errors may be tolerable in practice. It is generally an expert call what is alarming 
and what is acceptable, but the bigger the dataset and the less extreme the error 
distribution deviates, the more tolerable one can be. Also, deviations from normal 
errors are usually less worrying if the task is prediction, but more so if one is after 
inference with exact p-value reporting. 

As mentioned above, both ̂  and ŷ  are unbiased estimates and since their 
covariance matrices and distribution is known, confidence intervals and tests can 
be determined. Another important result from mathematical statistics is also that 
under Gaussian distribution, OLS is the maximum likelihood estimator (MLE). 
Hence there cannot be any other unbiased estimator that is asymptotically more 
efficient than OLS. Please note that this statement is stronger than the Gauss-
Markov theorem, but it requires more, namely normal errors. 

In summary, there are very good reasons to prefer OLS over other methods to 
estimate the linear regression coefficients. However, we require that the four 
assumptions made are at least roughly fulfilled. This needs to be verified by a 
number of model diagnostic plots, as shown in section 3.6 of this scriptum. In case 
of clear violations, one usually tries to improve the model with variable 
transformations, which rightly done serves to achieve better behaved errors. 
Alternatively, more complicated estimation procedures that require fewer 
assumptions can sometimes be used instead. 

Hat Matrix 

For the mathematically interested, we will now take further advantage of the matrix 
notation and study the solution of the OLS algorithm. We can write the fitted 
values ŷ  very simply as 

 ˆŷ X  . 

We now do some further calculus and plug-in the solution for ̂  from above. We 
then observe that the fitted values ŷ  are obtained by multiplying a matrix product, 
namely the hat matrix H , with the observed response values y : 

 1ˆˆ ( )T Ty X X X X X y Hy     

The matrix H  is called hat matrix, because “it puts a hat on the y ’s”, i.e. 
transforms the observed values into fitted values. This clarifies that the OLS 
estimator is linear and opens the door to a geometrical interpretation of the 
procedure: the hat matrix H  is the orthogonal projection of the response y  onto 
the space spanned by the columns of the design matrix X . Please note that 
(except for some rare cases with perfect fit), we cannot linearly combine the 
columns of the design matrix to generate the response y . The OLS solution then 
is the best approximation, in the sense of an orthogonal projection.  

Disclaimer: do not worry if this geometric notion of OLS regression is hard to 
grasp. It is a nice interpretation for those with imagination and the necessary 
background in linear algebra , but it is of little practical importance. 
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3.4 Inference 

Here, we will discuss some methods for inferring the relation between response 
and predictor. While a few topics are a repetition to the inference topics in simple 
linear regression, quite a number of novel aspects pop up, too. Please note that 
except for the coefficient of determination, the assumption of independent, 
identically distributed Gaussian errors is central to derive the results. 

3.4.1 The Coefficient of Determination 

In simple linear regression, we had presented the coefficient of determination 2R
as an intuitive goodness-of-fit measure that compares the scatter in y -direction 
with and without knowing the regression line. Though visualization is no longer 
possible with multiple linear regression, the idea (and formula) behind is identical: 

2R  expresses which portion of the total variation in the response y  is accounted 
for by the regression hyperplane. The definition is as follows: 
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In the numerator, we measure the scatter of the data points around the fitted 
values, i.e. the RSS. The denominator has the scatter of the data points around 
their mean. This is the total sum of squares (TSS). Again, the maximum value is 

2 1R  . It is attained if all data points are on the regression hyperplane. The other 
extreme case is 2 0R   and means that there is no explanatory power in the 
regression fit, and 1 2

ˆ ˆ ˆ... 0p      . The actual value is provided in the R 
summary in the second to last row: 

> summary(fit) 
 
Call: 
lm(formula = Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
    Educ + Dens + NonWhite + WhiteCollar + log(Pop) + House +  
    Income + log(HC) + log(NOx) + log(SO2), data = apm) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
[output partly ommitted...] 
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     
--- 
Residual standard error: 34.48 on 44 degrees of freedom 
Multiple R-squared: 0.7685,  Adjusted R-squared: 0.6949 
F-statistic: 10.43 on 14 and 44 DF,  p-value: 8.793e-10 
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The actual result is 2 0.7685R  , hence a good portion of the response variation is 
explained by the predictors. However, the raw 2R  should be interpreted with care: 
the more predictors that are added to a multiple linear regression model, the 
smaller its residual sum of squares becomes, and the higher 2R  is. This 
improvement may be bigger or smaller according to the predictive power of the 
added predictor, but the goodness-of-fit never gets worse. This makes the multiple 
R-squared a cumbersome tool for comparing models with different number of 
predictors. However, one can overcome this by using the adjusted R-squared. The 
definition is: 
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As we can see, there is a penalty term for more complex models, i.e. models 
where the number of predictors p  is higher. Consequently, the adjusted R-
squared is always smaller than the multiple R-squared. The difference is most 
pronounced when there are few observations and many predictors, and becomes 
almost nil if we have lots of observations and just few predictors. Final advice in 
this topic: for not privileging models with excess predictors, we recommend the 
use of the adjusted R-squared only.  

3.4.2 Confidence Intervals for the Coefficients 

The confidence intervals for the regression coefficients j , 0,...,j p  provide a 
way of expressing the uncertainty in these estimates. They contain all the null 
hypotheses j b   which the corresponding individual hypothesis test fails to reject 
and hence all values which are plausible for j . A quick but approximate way of 
computing these confidence intervals is: 

 2Coefficient Estimate Standard Error   

The necessary information can be found in the R summary and it is valuable to 
know about his ad-hoc method for quickly assessing the precision of the estimated 
coefficients. The actual, precise formula for computing a 95% confidence interval 
for the regression coefficient j  is: 

 1
ˆ0.975; ( 1) 0.975; ( 1)

ˆ ˆˆ ˆ ( )
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
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Knowing this exact formula by heart is somewhat less important for the 
practitioner. However, it is important to be familiar with the command confint() 
that computes the exact confidence intervals in R: 

> round(confint(fit),2) 
              2.5 %  97.5 % 
(Intercept)  706.15 1888.61 
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JanTemp       -4.15   -0.58 
JulyTemp      -5.84    2.34 
... 
[output partially omitted] 
... 
log(NOx)       5.26   62.68 
log(SO2)     -18.52   11.14 

As it has been mentioned above, the confidence intervals contain all values which 
can be seen as plausible for the regression coefficients. If in particular zero lies 
within the intervals, it is a plausible value, too. Hence it might be that the predictor 
in question does not contribute to the variation in the response and thus it is non-
significant. This leads us to the individual hypothesis tests that will be discussed in 
the next section. 

3.4.3 Individual Hypothesis Test 

For finding out whether an arbitrary value b  is plausible for the regression 
coefficient j , we can check whether it is contained in the 95%-CI from above. 
Alternatively, there is a test for the null hypothesis 0 : jH b  . The most popular 
variant is 0 1: 0H   : this is asking if the slope could be zero, which would mean 
that the predictor jx  has no influence on the response y . The natural goal is to 
reject the null for gaining evidence that the relation between y  and the predictor 
exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 
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On this basis, it is straightforward to determine acceptance and rejection regions, 
as well p-value. All the necessary ingredients together with the test statistic (t 
value) and the p-value (Pr(>|t|)) for 0 : 0jH    are routinely given in the R 
summary output: 

> summary(fit) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
... 
[output partially omitted] 
... 
log(NOx)     3.397e+01  1.425e+01   2.384   0.0215 *   
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     

As an additional example, we test 1 5   . The value of the test statistic is 
( 2.368 5) / 0.8851 2.973675   . The acceptance region is easily computed from R: 



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 53 

> qt(0.975,df=44) 
[1] 2.015368 

Hence, we reject the null hypothesis, if the observed value of the test statistic 
exceeds 2.015  in absolute value. This is the case, and hence 0 1: 5H     is 
rejected. The p-value with which this happens is computed by: 

> 2*pt(-abs((-2.368+5)/0.8851),df=44) 
[1] 0.004760858 

We conclude that our null hypothesis is quite clearly rejected. While these tests 
are simply carried out and are useful in practice, their interpretation is a bit tricky 
and has a few traps that one must not fall victim to, namely: 

1) The multiple testing problem: if we repeatedly do hypothesis testing on the 
 =5% significance level, our total type I error increases. In particular, for p  
hypothesis tests, it is 1 (1 ) p  . Note that for example with 30 predictors, 
the chance of making at least one false rejection in the individual 
hypothesis tests is already 0.785, a pretty high value! 

2) It can happen that all individual hypothesis tests fail to reject the null 
hypothesis (say at the 5% significance level), although it is in fact true that 
some predictor variables have a known effect on the response. This does 
often occur due to correlation among the predictor variables, so that the 
predictive power is distributed and none seems too important in the 
presence of the others. 

Another important point is the interpretation of the individual hypothesis test: it 
verifies the effect of predictor jx  on the response in the presence of all the other 
predictors. As a consequence, any change in the predictor set leads to 
(sometimes drastically) different test results. This is especially important because 
decisions about the omitting of variables are often based on the individual 
hypothesis tests. Due to the above, one must not drop more than one non-
significant variable at a time – this need be done step-by-step. 

3.4.4 Comparing Hierarchical Models 

The idea behind the test presented in this section is a correct comparison of two 
multiple linear regression models when the smaller has more than one predictor 
less than the bigger. This can be useful in practice, i.e. for evaluating whether air 
pollution (which appears in 3 predictors) has an effect on mortality. Moreover, the 
test will also be required for correct handling of categorical predictors, the so-
called factor variables (see below). We assume that there are two models. 

 Big model: 0 1 1 1 1... ...q q q q p py x x x x             

 Small model: 0 1 1 ... q qy x x       
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The big model must contain all the predictors that are in the small model, else the 
models cannot be considered as being hierarchical and the test which is presented 
below does not apply. The null hypothesis is that the excess predictors in the big 
model do not bring any benefit, hence: 

 0 1 2: ... 0q q pH         

We test against the alternative that at least one of the excess predictors has an 
effect, i.e. 0, 1,...j j q p    . The comparison of the two models will be based on 
the residual sum of squares (RSS). This quantity will always be smaller for the big 
model; the question is just by how much. If the difference is small, then one might 
not accept the additional variables, if it is big, then one should. The method for 
quantifying this is as follows: 
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Apparently, we have a relative comparison of the model adequacy, and also the 
number of observations, the total number of predictors and the difference in the 
number of predictors are taken into account. Under the null hypothesis, i.e. if the 
excess predictors do not contribute, the test statistic has an F-distribution with 
p q  and ( 1)n p   degrees of freedom. Using that distribution, we can decide if 
the difference between the models is important or not. As an example, we 
consider the mortality data. Here, we want to test if the three predictors that are 
linked to air pollution can be omitted from the multiple linear regression model 
without any loss. We do this in R: 

> fit.small <- update(fit, .~.-log(HC)-log(NOx)-log(SO2)) 
> anova(fit, fit.small) 
Analysis of Variance Table 
 
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income + log(HC) + 
                     log(NOx) + log(SO2) 
Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income 
  Res.Df   RSS Df Sum of Sq      F  Pr(>F)   
1     44 52312                               
2     47 61142 -3   -8829.3 2.4755 0.07388 . 

Note that the small model was defined with an update from the big model. It is not 
required to do so, we could also write it explicitly using the lm() command. The R 
function for the hierarchical model comparison is anova(). As input, it takes the 
big and small model. In the output, the two model formulas are repeated, before 
the quantitative result is presented. We recognize the RSS for the two models, 
also the degrees of freedom and the value of the test statistic are given. This is 
gauged against the F  distribution, which in this particular case looks as follows: 
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If the excess predictors (i.e. the air pollution) do not have an effect and hence 
under the null hypothesis, we expect the test statistic to be smaller than: 

> qf(0.95,3,47) 
[1] 2.802355 

This is the case, hence we are in the acceptance region and the null hypothesis 
cannot be rejected. The p-value is provided in the R output, it is 0.074. In 
conclusion, it might be that the air pollution, in the way it was measured here, does 
not affect mortality. At least we failed to reject the null that it does not have 
influence on the outcome with the current data and model. We finish this section 
by remarking that if a hierarchical model comparison is done for two models where 
the difference is only one single predictor, it coincides with the individual 
hypothesis test. 

  

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

The F distribution with 3 and 47 df


