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Now consider an arbitrary scheme with volume V. For any c >0 we can find an integer n so 
that the boxes from the first n stages of this scheme have volume at least V-ce. Since these boxes 
belong to an n-stage problem, their volume is at most VJ and therefore less than V. It follows 
that V< V+ Eand, since c is arbitrary, V< V. This shows that V is indeed the maximum volume 
in the infinite-stage problem. 

Finally, if a scheme produces the maximum volume V, then all of the subschemes belonging 
to any stage must produce V times their scaling factor or they could be replaced with a definite 
improvement. Without loss of generality we consider the ji of the first stage. It must satisfy 

V=t(l -2[Q2+4t2V 

or 

4(V+ l)A3-4,u2+M- V=O, 

and this equation suffices to prove that ,-=X. This follows because X is a double root and 
therefore the remaining root must be 

=.5827... >- 
4(V+1)X2 

This completes the proof that the only scheme with volume Vis the one in which ,u =X for all i. 
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The birthday problem, to find the probability that in a group of n people some two will share 
a common birthday, has occurred frequently in the literature since having been proposed in 1939 
by von Mises. It is easily solved under the assumptions that each person's birthday is determined 
independently, and that the 365 possible birthdays (ignoring leap years) are equally likely. 
Under these independence and uniformity assumptions it is easy to show that the probability of 
a shared birthday reaches 2 as soon as the size of the group reaches 23. 

The reason for the uniformity assumption is interesting. Depending on the population, it may 
or may not be a reasonable approximation to reality, but in any case it is enormously 
convenient. To see this, let us consider the problem without assuming uniformity. To take full 
account of the 365 probabilities of being born on different days of the year, we let p, be the 
probability of being born on day i, i = 1,... ,365, and obtain the (complementary) probability of 
n independently chosen people all having different birthdays as 

P(n )=n! 2 pj- *pi, (1) 
il < ... <in 

the sum being over all n-subsets of { 1, 2, .. . ,365) such that i1 <i2 < ... <in. The difficulty is that 
the sum has (365) terms, and for group size n = 23 this is (365 ) 1036 terms, which even the 

fastest computer would need 102? centuries to calculate. 
Nevertheless, two observations can be made, one theoretical, one empirical. In a group of n 

people, the probability of a shared birthday is least for the uniform distribution. Therefore, 
regardless of the actual distribution of birthdays, a group size of 23 is sufficient to make a shared 
birthday more probable than not. There are proofs of this in the literature, but the following 
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version of Munford's 1977 proof [3] is perhaps the simplest. We will show that the (complemen- 
tary) probability P(n) of n independently chosen people having different birthdays is greatest 
for the uniform distribution. We assume, of course, that n > 2 and that at least n of the p,'s are 
nonzero, so that n different birthdays are possible. We will show how P(n) changes if we alter 
the values of two unequal probabilities, say pI and P2, by replacing them with their common 
mean, 2(PI +P2). Let us partition the sum (1) into three parts: those terms containing both pI 
and P2, those terms containing just one of pI and P2, and those terms containing neither pI nor 
P2. Let us also factor out pI and P2 whenever they occur. We may then express P(n) as 

P(n)-=n! PI P2 2 Ai,l .. 
*Pin2+(PI +P2) I Pi, .. *Pin-I 

2<il < ... <In-2 2<il < ... <in-I 

2<il< p.- < pin ) (2) 

If we now replace both pi and P2 by their common mean, I(P1 +P2), thus leaving their sum 
unchanged, only the first term in (2) changes, in which we must replace pIp2 by ((PI +P2))2. But 
since PIP2 <({(pI +P2))2, (taking the square root of each side, this is merely the statement that 
the geometric mean of two unequal numbers is less than their arithmetic mean) this replacement 
will only increase the value of P(n). Thus since the probability P(n) of different birthdays can be 
increased by this operation whenever two p,'s are unequal, it must be greatest when all the pi's 
are equal, that is, for the uniform distribution. 

The second observation involves comparing the uniformity assumption with actual data. 
FIGURE 1 is a graph of the empirical probabilities of a birth occurring on any day of the year 
1977 for the 239,762 live births in New York State (source: New York State Health Depart- 
ment). I leave it to the reader to surmise reasons for the obvious weekly cyclical component. The 
empirical probabilities vary from a low of .002135 (on Sunday, December 11th) to a high of 
.003478 (on Wednesday, July 6th), a variation of almost 27% from the mean of 1/365. Thus for 
a population born in a given year (the type of population from which most school classes are 
drawn) the assumption of uniformity is not valid. However, because a given birthday will fall on 
different days of the week in different years (since 365 is relatively prime to 7) in a population of 
mixed ages the weekly cycle will be averaged out. For such a population uniformity will be a 
reasonable assumption, as is shown by the graph in FIGuIRE 2, in which the data is as in FIGURE 
1 except that each daily probability has been averaged with the six following it to remove the 
weekly cycle. The variation here is only about 10% above and below the mean of 1/365. 
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FIGuRE 1. 
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FIGURE 2. 

Although the birthday problem with 365 different probabilities is hopelessly intractable, it 
becomes manageable if one allows a smaller number, m, of different probabilities, p ,...'Pm' and 
rounds each of the actual empirical probabilities to the nearest of these. Then if di is the number 
of days being assigned probability pi, subject to the obvious consistency relations Idi = 365, 

dipi= 1, the probability of n people all having different birthdays is 

n ! E ( )% 
nl+--- +nm=n i=l ni 

where the sum is over the (m nn- 1) different m-tuples (n1, .,tim) of nonnegative integers 
satisfying n, + * + nm = n (see Feller [2], p. 38). 

Size (n) Probability of a Shared Birthday 

of Group Uniform Case Non-Uniform Case 
12 .1670 .1683 
15 .2529 .2537 
18 .3469 .3491 
21 .4437 .4463 
22 .4757 .4783 
23 .5073 .5101 

TABLE 1. 

A computer calculation (performed on a Univac 1100/82 with 18 digit precision) using 
m= 10 different probabilities based on the empirical probabilities from the 1977 New York State 
data graphed in FIGURE 1 shows that the probability of a shared birthday is surprisingly robust: 
a group size of 23 is still required to raise the probability above one-half (see TABLE 1). 

I would like to thank the C. W. Post Computer Center and the C. W. Post Research Committee for their 
assistance. 
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