Serie 5

1. Die kumulative Verteilungsfunktion $F(k) = P[X \le k]$ der Binomial (20, 0.5)-Verteilung ist aus untenstehender Tabelle ersichtlich.

Berechnen Sie daraus

- 1. P[X = 10],
- 2. P[X > 12],
- 3. $P[5 \le X \le 15],$
- 4. die grösste ganze Zahl k mit $P[X < k] \le 0.025$ sowie
- 5. die kleinste ganze Zahl k mit $P[X > k] \le 0.05$.

k	0	1	2	3	4	5	6	7	8
F(k)	0.000	0.000	0.000	0.001	0.006	0.021	0.058	0.132	0.252
k	9	10	11	12	13	14	15	16	17
F(k)	0.412	0.588	0.748	0.868	0.942	0.979	0.994	0.999	1.000
					•				
k	18	19	20						
F(k)	1.000	1.000	1.000						

2. ("Qualitätskontrolle von Reagenzgläsern") Ein Hersteller von Reagenzgläsern garantiert seinen Kunden, dass der Anteil minderwertiger Gläser kleiner als 10% ist. Zwecks Qualitätssicherung entnimmt er einer grossen Lieferung eine zufällige Stichprobe im Umfang von fünfzig Gläsern. Es stellt sich heraus, dass von diesen fünfzig Gläsern 3 minderwertig sind.

Für den Hersteller ergibt sich nun das Problem: Kann er aufgrund der gezogenen Stichprobe tatsächlich beruhigt davon ausgehen, dass der Anteil minderwertiger Gläser in der ganze Lieferung wirklich kleiner als 10% ist. Führe einen Hypothesentest mit dem Signifikanzniveau 5% durch löse damit das Problem des Herstellers.

3. Um die Anzahl Forellen N in einem See zu bestimmen, wird folgendermassen vorgegangen (Capture-Recapture Methode):

In einem ersten Schritt werden 500 Forellen gefangen, markiert und wieder ausgesetzt.

In einem zweiten Schritt werden nochmals 200 Forellen gefangen und die Anzahl X der markierten Forellen bestimmt.

- a) Für X wird oft eine Binomialverteilung angenommen, $X \sim \mathcal{B}(n, \pi)$. (π bezeichne die Wahrscheinlichkeit, dass ein im zweiten Schritt gefangener Fisch markiert ist.)
 - Wie gross ist n? Wie gross ist der Parameter π , wenn die Gesamtzahl der Forellen im See N=2000 bzw. N=5000 ist?
- b) Die tatsächliche Beobachtung für X ergibt den Wert 40. Geben Sie eine vernünftige Schätzung für den Parameter π an und leiten Sie daraus eine Schätzung für die Gesamtzahl N der Forellen im See ab.
- c) Testen Sie wieder für den beobachteten Wert 40 die Nullhypothese N=2000 gegen die Alternative N>2000 auf dem 5%-Niveau.
- d) Überlegen Sie, aus welchen Gründen die Annahme der Binomialverteilung in Frage gestellt werden kann.

Besprechung: Donnerstag, October 20.

Abgabe: Übung nicht abgeben - wird nicht korrigiert.