
Uninformative Master of Lecturers AS 2011

Solution to Series 3

1. a) First we type in the data. The scatterplot of runoff versus rainfall suggests that a linear
relationship holds. Therefore, one would guess that the R2 should be large, i.e. close to 1.

> rainfl <- c(5, 12, 14, 17, 23, 30, 40, 47, 55, 67, 72, 81, 96, 112, 127)

> runoff <- c(4, 10, 13, 15, 15, 25, 27, 46, 38, 46, 53, 70, 82, 99, 100)

> hrunof <- data.frame(rainfall=rainfl, runoff=runoff)
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b) We fit a linear model with runoff as response and rainfall as predictor. We are then able to
use this model for prediction.

> fit <- lm(runoff ~ rainfall, data=hrunof)

> pred <- predict(fit, newdata=data.frame(rainfall=50), interval="prediction")

If the rainfall volume takes a value of 50 we find a runoff volume of 40.22 with a 95% prediction
interval of [28.53,51.92].

We can also draw the regression line and the 95% prediction interval to the data.
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c) A R2 of 0.98 is extremely high, i.e. that a huge part of the variation in the data can be attributed

to the simple linear association between runoff and rainfall volume.

d) The null hypothesis β1 = 0 is clearly rejected. However, the confidence interval for β1 does not
contain β1 = 1, i.e. that a null hypothesis of β1 = 1 would be rejected, too. Therefore, we
conclude that no 1 : 1 relation between rainfall and runoff holds. We suspect that part of the
rain evaporates or trickles away.

> summary(fit)

Call:

lm(formula = runoff ~ rainfall, data = hrunof)

Residuals:

Min 1Q Median 3Q Max

-8.279 -4.424 1.205 3.145 8.261

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.12830 2.36778 -0.477 0.642

rainfall 0.82697 0.03652 22.642 7.9e-12 ***

---

Signif. codes: 0

> ## Confidence intervals for the coefficients

> confint(fit)

2.5 % 97.5 %

(Intercept) -6.2435879 3.9869783

rainfall 0.7480677 0.9058786

e) From the Tukey-Anscombe plot (residuals vs. fitted values) we observe a non-constant variance of
the residuals. With increasing runoff the residuals increase. This is a somewhat typical situation
and physically plausible.
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f) Although the histograms of the original data do not strongly point to a log-transformation, we
try it and will see that it turns out to be useful.
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Despite of the huge R2 the model on the original scale does not fit very well. The constant
variance assumption is violated. From the diagnostic plots we can see that the model on the
transformed scale performs better.

> hrunof <- within(hrunof, {

log.runoff <- log(runoff)

log.rainfall <- log(rainfall)

})

> fit.log <- lm(log.runoff ~ log.rainfall, data=hrunof)

> par(mfrow = c(1,2))

> with(fit.log, {

plot(fitted(fit.log), residuals(fit.log),

main="Residuals vs. Fitted Values with Logged Variables",

cex.main=0.7)

abline(h=0, col="grey", lty=3)

qqnorm(residuals(fit.log), main="Normal Plot with Logged Variables", cex.main=0.7)

qqline(residuals(fit.log))

})
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However, differences between the two models are small.

> par(mfrow=c(1,2))

> ## Scatterplot on the log scale

> with(hrunof, {
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plot(log.rainfall, log.runoff,

main=c("log(Runoff) vs. log(Rainfall)"), cex.main=0.9,

pch=20)

abline(fit.log, col="red")

})

> ## Scatterplot on original scale

> with(hrunof, {

plot(rainfall, runoff, main = c("Runoff vs. Rainfall"), cex.main=0.9,

pch=20)

abline(fit, col="red")

lines(rainfall, exp(predict(fit.log)), col="blue")

})
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g) On the original scale the prediction interval of the log-transformed model is of the form of a
trumpet (blue dot lines). This is more realistic, especially since fitted values and the prediction
interval of the log-transformed model have positive values. Negative runoff values, as seen on the
original scale, are impossible that is why the log-transformed model is superior to the original one.
Although differences in the diagnostic plots seem small and problems appear to be more academic
than fundamental, the log-transformed model resulting from a thorough statistical analysis pays
off.

> ## Prediction intervals of the trsf model on the original scale

> with(hrunof, {

plot(rainfall, runoff, pch=20,

xlab="Rainfall", ylab="Runoff",

xlim=c(0,140), ylim=c(0,100))

title("Runoff vs. Rainfall")

abline(fit, col="red")

lines(rainfall, exp(predict(fit.log)), col="blue")

interval <- predict(fit, interval="prediction")

lines(rainfall, interval[,2], lty=3, col="red")

lines(rainfall, interval[,3], lty=3, col="red")

interval.log <- predict(fit.log, interval="prediction")

lines(rainfall, exp(interval.log[,2]), lty=3, col="blue")

lines(rainfall, exp(interval.log[,3]), lty=3, col="blue")

})
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2. a) Yes, the p-value (0.000475) is smaller than 5%.
Furthermore, we can from the estimation of the coefficient of C that for each additional cow the
income increases by 20$.

farm <- read.table("http://stat.ethz.ch/Teaching/Datasets/farm.dat",header=TRUE)

attach(farm)

I <- Dollar

C <- cows

A <- acres

Call: lm(formula = I ~ C, data = farm)

Residuals:

Min 1Q Median 3Q Max

-204.68 -80.02 15.48 54.57 284.43

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 694.019 50.039 13.869 4.75e-11 ***

C 20.111 4.725 4.256 0.000475 ***

---

Residual standard error: 122.9 on 18 degrees of freedom

Multiple R-Squared: 0.5016, Adjusted R-squared: 0.4739

F-statistic: 18.11 on 1 and 18 degrees of freedom,

p-value: 0.0004751

b) > xx <- data.frame(C=c(0,20,mean(C)))

> predc <- predict(mod1,xx,interval="confidence")

> predc

fit lwr upr

1 694.0189 588.8902 799.1476

2 1096.2361 971.3953 1221.0768

3 872.0000 814.2627 929.7373

> predp <- predict(mod1,xx,interval="prediction")

> predp

fit lwr upr

1 694.0189 415.2286 972.8092



6
2 1096.2361 809.4309 1383.0412

3 872.0000 607.4143 1136.5857

c) > summary(mod1)

Call: lm(formula = I ~ A, data = farm)

Residuals:

Min 1Q Median 3Q Max

-281.54 -113.94 -28.18 94.28 387.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 868.7363 105.9796 8.197 1.73e-07 ***

A 0.0234 0.7066 0.033 0.974

---

Residual standard error: 174.1 on 18 degrees of freedom

Multiple R-Squared: 6.09e-005, Adjusted R-squared: -0.05549

F-statistic: 0.001096 on 1 and 18 degrees

of freedom, p-value: 0.974

> summary(mod2)

Call:

lm(formula = A ~ C, data = farm)

Residuals:

Min 1Q Median 3Q Max

-76.1038 -31.0814 -0.7132 31.4186 89.7221

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 191.059 18.641 10.25 6.1e-09 ***

C -5.826 1.760 -3.31 0.0039 **

---

Residual standard error: 45.78 on 18 degrees of freedom

Multiple R-Squared: 0.3783,Adjusted R-squared: 0.3438

F-statistic: 10.95 on 1 and 18 DF, p-value: 0.003897

> summary(mod3)

Call: lm(formula = I ~ A + C, data = farm)

Residuals:

Min 1Q Median 3Q Max

-145.064 -46.719 -9.992 55.149 133.664

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 285.4572 81.3793 3.508 0.0027 **

A 2.1384 0.3936 5.434 4.47e-05 ***

C 32.5690 3.7276 8.737 1.08e-07 ***

---

Residual standard error: 76.45 on 17 degrees of freedom

Multiple R-Squared: 0.8179, Adjusted R-squared: 0.7965

F-statistic: 38.17 on 2 and 17 degrees of freedom, p-value: 5.165e-007

The income source land can only be identified if we control for the number of cows, i.e., comparing
like with like.

In colloquial terms, the positive correlation of I and C and the negative correlation of C and A
cancel each other out. Thus, the variable A is not considered significant in a univariate regression



7
of I onto A.

It holds that I ≈ 285.5 + 2.1A + 32.6C, because C ≈ 17.9 − 0.065A it follows that I ≈ 285.5 +
2.1A+ 32.6(17.9 − 0.065A) = 869.04 − 0.019A. This means variable A is no longer significant.

3. a) First we read in the data and account for the categorial nature of sex.

> ## Load data

> file <- url("http://stat.ethz.ch/education/semesters/as2011/asr/teengamb.rda")

> load(file)

> ## Choose correct data type for sex

> teengamb <- within(teengamb, sex <- factor(sex, labels=c("male", "female")))

Then we draw histograms for the different variables.
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The histograms of income and gamble show skewed distributions. Therefore, we perform a log
transformation. Due to the fact that 4 data points of gamble are zero, we need to add a constant
(here: 0.1) prior to transformation.

> ## Transformations

> any(teengamb$income==0) # log trsf directly possible

[1] FALSE

> any(teengamb$gamble==0) # any zeros?

[1] TRUE

> sum(teengamb$gamble==0) # how many zeros? before log, need to add 0.1

[1] 4

> teengamb <- within(teengamb, {

log.income <- log(teengamb$income)

log.gamble <- log(teengamb$gamble+0.1)

})

b) After having transformed gamble and income, we fit a linear regression model to the data. Note,
that we have also fitted the original model. For further inside, compare the results of the original
model with the transformed one.

> fit.orig <- lm(gamble ~ sex + status + income + verbal, data=teengamb)

> fit.trsf <- lm(log.gamble ~ sex + status + log.income + verbal, data=teengamb)
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c) Only a small part of the total variation in the response can be explained by the predictors, i.e.

that the R2 is only 0.43.
However, if we compare the diagnostic plots of the transformed model with the original model
(not shown), we see that the model assumptions are violated in case of the original data. Due to
the log transformation we accounted for the non-constant variance and non-zero expectation of
the residuals of the original model.
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Furthermore, we see that for the original model negative gambling expenditures are predicted (not
shown), which is an artifact. Contrarily, the transformed model predicts only positive expenses
on the original scale.

d) The largest residual is associated with a female gambler that has a high socioeconomic status
(based on the parents’ occupation), good verbal communication skills, but low income and high
gambling expenses compared to the average gambler.

> mx.ind <- which.max(resid(fit.trsf))

> teengamb[mx.ind,]

sex status income verbal gamble log.gamble log.income

5 female 65 2 8 19.6 2.980619 0.6931472

> summary(teengamb)

sex status income verbal gamble

male :28 Min. :18.00 Min. : 0.600 Min. : 1.00 Min. : 0.0

female:19 1st Qu.:28.00 1st Qu.: 2.000 1st Qu.: 6.00 1st Qu.: 1.1

Median :43.00 Median : 3.250 Median : 7.00 Median : 6.0

Mean :45.23 Mean : 4.642 Mean : 6.66 Mean : 19.3

3rd Qu.:61.50 3rd Qu.: 6.210 3rd Qu.: 8.00 3rd Qu.: 19.4

Max. :75.00 Max. :15.000 Max. :10.00 Max. :156.0

log.gamble log.income

Min. :-2.3026 Min. :-0.5108

1st Qu.: 0.1788 1st Qu.: 0.6931

Median : 1.8083 Median : 1.1787

Mean : 1.4412 Mean : 1.2747

3rd Qu.: 2.9704 3rd Qu.: 1.8256

Max. : 5.0505 Max. : 2.7081

e) In contrast to the median, the mean of the residuals is always zero. This is a consequence of the
least squares method that minimizes the residual sum of squares.

f) In line with the previous task, the least squares method guarantees that the residuals are neither
correlated with the predictors nor the fitted values.
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> cor(resid(fit.trsf), fitted(fit.trsf))

> cor(resid(fit.trsf), teengamb$log.income)

> cor(resid(fit.trsf), teengamb$status)

g) The predicted (log) gambling expenses decrease by -1.5 when looking at female gamblers instead
of males. The 95% confidence interval [-2.69,-0.31] suggests that this decrease is significant.

h) The more predictors we add the lower the standard deviation of the residuals but the higher the
R2 and adjusted R2. This means that we can explain more and more variance in the response
by adding these predictors.

> fit <- lm(log.gamble ~ 1, data=teengamb)

> sigma <- summary(fit)$sigma

> rsqua <- summary(fit)$r.squared

> adjr2 <- summary(fit)$adj.r.squared

> fit <- lm(log.gamble ~ log.income, data=teengamb)

> sigma <- c(sigma, summary(fit)$sigma)

> rsqua <- c(rsqua, summary(fit)$r.squared)

> adjr2 <- c(adjr2, summary(fit)$adj.r.squared)

> fit <- lm(log.gamble ~ log.income + sex, data=teengamb)

> sigma <- c(sigma, summary(fit)$sigma)

> rsqua <- c(rsqua, summary(fit)$r.squared)

> adjr2 <- c(adjr2, summary(fit)$adj.r.squared)

> fit <- lm(log.gamble ~ log.income + sex + verbal, data=teengamb)

> sigma <- c(sigma, summary(fit)$sigma)

> rsqua <- c(rsqua, summary(fit)$r.squared)

> adjr2 <- c(adjr2, summary(fit)$adj.r.squared)

> fit <- lm(log.gamble ~ log.income + sex + verbal + status, data=teengamb)

> sigma <- c(sigma, summary(fit)$sigma)

> rsqua <- c(rsqua, summary(fit)$r.squared)

> adjr2 <- c(adjr2, summary(fit)$adj.r.squared)
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