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Extending the Linear Model
What is the problem?

 So far, we exclusively considered continuous response
variables. Now, we wish to extend this to binary and ca-
tegorical response, proportions or counts!

• This does not fit within the current framework

• Counterexamples:  see next slides

We need some additional techniques which can deal with
these types of situations. Depending on how the response
variable is, there are several different approaches.
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Extending...: Example 1
Logistic Regression, i.e. 0/1 response:

In human medicine, we are often interested in the question for
how much „dose“ of a medication we have an effect, i.e. a 
reduction in pain or symptoms.

Data:

Patients, where each one obtains some „dose“ and as a 
response, either has a reduction (1), or not (0). 

There may be some further predictors such as age, sex, … 
that contribute towards predicting the response.
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Extending...: Example 1
Logistic Regression, i.e. 0/1 response:

• A statistical model for this example takes into account that for 
a given “dose” resp. predictor configuration, we will only have 
an effect on some of the subjects, but not on all of them. 

• We thus need to model the relation between the binary 
response and a number of predictors. 

The perhaps simplest, but faulty approach is:

 This will ultimately lead to probabilities beyond [0,1].

0 1 1( 1) ...i i ipP Y x x      
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Extending...: Example 1
• We obtain a better model if we transform the response variable 

to a scale that ranges from minus to plus infinity.

• Usual choice is the so-called logit transformation:

We obtain the logistic regression model:

 all fitted values are within [0,1].

log( / (1 ))p p p

0 1 1
( 1)log ...

1 ( 1)
i

i ip
i

P Y x x
P Y

  
 

      
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Extending...: Example 2
Poisson Regression

What are predictors for the locations of starfish? 

 analyze the number of starfish at several locations, for which
we also have some covariates such as water temperature, ...

 the response variable is a count. The simplest model for this is
a Poisson distribution.

We assume that the parameter at location i depends in a linear 
way on the covariates:

, where

i

~ ( )i iY Pois  0 1 1log( ) ...i i p ipx x      
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Extending...: Example 3
Log-Linear-Models

Question:

Prediction of a nominal response variable

Example:

Which party does a person favor, depending on covariates
such as education, age, sex, region, …

 such data can be summarized with contingency tables

 and they can be modeled using log-linear models
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Generalized Linear Models
What is it?

• General framework for regression type modeling

• Many different response types are allowed

•  Notion: the expected value of the response has a monotone 
relation to a linear combination of the predictors.

• Some further requirements on variance and density of Y

 may seem complicated, but is very powerful!

0 1 1[ ] ( ... )i i p ipE Y g x x     
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Binary Logistic Regression
What is it?

• Response

What do we need to take care of?

• Formulation of the model

• Estimation

• Inference

• Model diagnostics

• Model choice

 0,1iY 
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Example
Premature Birth, by Hubbard (1986)

survival (1) /death (0) after premature birth.

Predictors:

- weight (in grams) at birth
- age at birth (in weeks of pregnancy)
- apgar scores (vital function after 1 and 5 min)
- pH-value of the blood (breathing)

Observations:

- there are 247 instances

 0,1iY 
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Example
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Logistic Regression Model
•                    has a Bernoulli distribution.

• The parameter of this distribution is , the success rate

Now please note that:

 the most powerful notion of the logistic regression model is to
see it as a model where we try to find a relation between the
expected value of and the predictors! 

Important: is no good here! 

 0,1iY 

ip

( 1| ) [ | ]i i ip P Y X E Y X  

iY

0 1 1( 1) ...i i ipP Y x x      
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Logit Transformation
Goal: mapping from

Logit transformation:

Interpretation: probabilities are mapped to logged odds
("Wettverhältnisse") which can then be modeled linearly.

 where is the error term?
...

[0,1] ( , ) 

( ) log
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 
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Some Remarks
• For estimating the regression coefficients, we require the

observations to be independent.

• There is no restriction for the predictors. They can be
continuous, categorical, transformed, interactions, …

• is called the linear predictor

• is the link function, mapping between and

• There are other (less important) link functions:
- probit link
- c-log-log link

0 1 1 ...i i p ipx x      

( )g  [ ]iE Y i
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Survival vs. Linear Predictor
• 
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Estimation
Multiple linear regression:
 minimize sum of squared residuals!

can be solved in closed form

Logistic regression:
 maximum likelihood approach!

leads to a non-linear equation system that needs to be
solved with an iterative approach by weighted multiple
linear regressions.

Important:
 seems like a very different paradigm, but is it? 
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Interpretation of the Coefficients
 see blackboard…
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Summary Output from R
> summary(glm(survival ~ I(log10(weight)) + age,

family  = "binomial", data = baby)

Deviance Residuals: ...

Coefficients:     Estimate Std. Error z value Pr(>|z|) 

(Intercept)      -33.97108    4.98983  -6.808 9.89e-12 ***

I(log10(weight))  10.16846    1.88160   5.404 6.51e-08 ***

age                0.14742    0.07427   1.985   0.0472 * 

---

Null deviance: 319.28  on 246  degrees of freedom

Residual deviance: 235.94  on 244  degrees of freedom

AIC: 241.94
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Inference: Individual Parameter Tests
Multiple Linear Regression:

Gaussian errors are normally distributed

Logistic Regression:

There are no errors, variability arises from Bernoulli distribution

The regression coefficients are only approximately normally
distributed with a covariance matrix that can be derived from
the coefficients. 

Hence: 

ˆ
j

ˆ
j
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Inference: Global Tests with GLMs
There are three tests, two can be done with logistic regression:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two nested models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Goodness-of-Fit
Multiple Linear Regression:

Sum of Squared Residuals

Logistic Regression:

Residual Deviance

- based on the log-likelihood
- in principle: comparison against fully saturated model
- for logistic regression, there is no formal test here

ˆ ˆ ˆ( , ) 2 ( log( ) (1 ) log(1 ))i i i ii
D y p y p y p    
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Comparing Nested Models
Model 1: small model S, with q parameters

Model 2: big model B, with p parameters

Null hypothesis and test statistic:

Distribution of the test statistic:

0 1 2: ... 0q q pH       

     ( ) ( ) ( ) ( )ˆ ˆ2 , ,B S S Bll ll D y p D y p  

( ) ( ) 2~S B
p qD D  
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Example with drop1()
> drop1(fit, test="Chisq")

Single term deletions

Model: survival ~ I(log10(weight)) + age

Df Deviance    AIC    LRT   Pr(Chi)  

<none>                235.94 241.94    

I(log10(weight))  1   270.19 274.19 34.247 4.855e-09 ***

age               1   239.89 243.89  3.948   0.04694 *  

Question:

- where is the difference to the summary output?
- it exists, though it‘s not obvious and asymptotically vanishes
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AIC and Variable Selection
General remark:

All comparison between models of different size can also be
done using the AIC criterion. Not only in logistic regression, but 
also here.

The criterion:

Variable selection:

- stepwise approaches as with multiple linear regression
- factor variables need to be treated the right way!

ˆ( , ) 2iAIC D y p p 
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Null Deviance
Smallest model:

- The smallest model is without predictors, only with intercept
- Fitted values will all be equal to
- Our best fit (F) and the smallest model (0) are nested

A global test:

Example and "Quick Check":  see blackboard...

Null deviance: 319.28  on 246  degrees of freedom

Residual deviance: 235.94  on 244  degrees of freedom

0̂

     ( ) (0) (0) ( )ˆ ˆ2 , ,F Fll ll D y p D y p  
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Model Diagnostics
Diagnostics are:

• in principle as important with logistic regression as they are
with multiple linear regression models

• again based on differences between fitted & observed values

we now have to take into account that the variances are not 
equal for the different instances.

we have to come up with novel types of residuals:

Pearson and Deviance residuals
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Pearson Residuals
Take the difference between observed and fitted value and
divides by an estimate of the standard deviation:

 is the contribution of the ith observation to the Pearson 
statistic for model comparison.

 It is important to note that Pearson residuals exceeding a 
value of two in absolute value warrant a closer look

ˆ
ˆ ˆ(1 )

i i
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Deviance Residuals
Take the contribution of the ith observation to the log-likelihood, 
i.e. the chi-square statistic for model comparison.

For obtaining a well interpretable residual, we take the square 
root and the sign of the difference between true and fitted value:

 - deviance residuals > 2 warrant a closer look.
- the distribution of the deviance residuals is not known.

 ˆ ˆlog( ) (1 ) log(1 )i i i i id y p y p     

ˆ( )i i i iD sign y d  
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Tukey-Anscombe Plot
Remark: sometimes studentized residuals are used!
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Tukey-Anscombe Plot
The Tukey-Anscombe plots in R are not perfect. Better use:

xx <- predict(fit, type="response")

yy <- residuals(fit, type="pearson")

scatter.smooth(xx, yy, family="gaussian", pch=20)

abline(h=0, lty=3)

Reasons:

- using a non-robust smoother is a must
- different types of residuals can be used
- on the x-axis: probs or linear predictor
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More Diagnostics
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Binomial Regression Models

 for the number of killed insects, we have

we are mainly interested in the proportion of insects surviving

 these are grouped data: there is more than 1 observation for
a given predictor setting

Concentration
in log of mg/l

Number of
insects n_i

Number of
killed insects y_i

0.96 50 6

1.33 48 16

1.63 46 24

2.04 49 42

2.32 50 44

~ ( , )i i iY Bin n p
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Model and Estimation
The goal is to find a relation:

We will again use the logit link function such that

Here,     is the expected value             , and thus, also this model 
here fits within the GLM framework. The log-likelihood is:

1 0 1 1( 1| ,..., ) ~ ...i i p i i p ipp P Y x x x x        
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Fitting with R
We need to generate a two-column matrix where the first 
contains the “successes” and the second contains the “failures”

> killsurv
killed surviv

[1,]      6     44
[2,]     16     32
[3,]     24     22
[4,]     42      7
[5,]     44      6

> fit <- glm(killsurv~conc, family="binomial")
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Summary Output
The result for the insecticide example is:

> summary(glm(killsurv ~ conc, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -4.8923     0.6426  -7.613 2.67e-14 ***

conc 3.1088     0.3879   8.015 1.11e-15 ***

---

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675
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Proportion of Killed Insects
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Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two nested models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Goodness-of-Fit Test
 the residual deviance will be our goodness-of-fit measure!

Paradigm: take twice the difference between the log-likelihood
for our current model and the saturated one, which fits
the proportions perfectly, i.e.

Because the saturated model fits as well as any model can fit, the 
deviance measures how close our model comes to perfection. 

ˆ /i i ip y n

1

( )ˆ( , ) 2 log ( ) log
ˆ ˆ( )

k
i i i

i i i
i i i i

y n yD y p y n y
y n y

    
          

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Evaluation of the Test
Asymptotics:
If      is truly binomial and the     are large, the deviance is 
approximately     distributed. The degrees of freedom is:

> pchisq(deviance(fit), df.residual(fit), lower=FALSE)

[1] 0.69287

Quick and dirty:
:  model is not worth much. 

More exactly: check

 only apply this test if at least all 

iY in
2

(# ) 1k of predictors 

Deviance df
2df df

5in 
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Overdispersion
What if ???

1) Check the structural form of the model

- model diagnostics
- predictor transformations, interactions, …

2) Outliers

- should be apparent from the diagnostic plots

3) IID assumption for within a group

- unrecorded predictors or inhomogeneous population
- subjects influence other subjects under study

Deviance df

ip
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Overdispersion: a Remedy
We can deal with overdispersion by estimating:

This is the sum of squared Pearson residuals divided with the df

Implications:

- regression coefficients remain unchanged
- standard errors will be different: inference!
- need to use an F-test for comparing nested models

22

1

ˆ( )1ˆ
ˆ ˆ(1 )

n
i i i

i i i i

y n pX
n p n p n p p





  

  
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Results when Correcting Overdispersion
> phi <- sum(resid(fit)^2)/df.residual(fit)

> phi

[1] 0.4847485

> summary(fit, dispersion=phi)

Estimate Std. Error z value Pr(>|z|)   

(Intercept)  -4.8923     0.4474  -10.94   <2e-16 ***

conc 3.1088     0.2701   11.51   <2e-16 ***

---

(Dispersion parameter taken to be 0.4847485)

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675
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Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two nested models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Testing Nested Models and the Global Test
For binomial regression, these two tests are conceptually equal
to the ones we already discussed in binary logistic regression.

We refer to our discussion there and do not go into further
detail here at this place!

Null hypothesis and test statistic:

Distribution of the test statistic:

0 1 2: ... 0q q pH       

     ( ) ( ) ( ) ( )ˆ ˆ2 , ,B S S Bll ll D y p D y p  
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p qD D  


