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Collinearity = Correlated Predictors
If two or more predictors are strongly correlated, i.e. try to 
explain very similar aspects of the data, estimation is difficult. 
The regression coefficients will be less precisely estimated, 
which influences interpretation of the results. 

There is a need to recognize collinearity!

1) Plot the correlation matrix of the predictors
plotcorr(cor(my.dat))

2) Variance Inflation Factors
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How to Deal with Correlated Predictors?
1) Generate new variables

 see example on next slides...

2) Variable selection

Only work with the relevant variables, and omit the 
redundant ones. This often helps a lot. We will be discussing 
variable selection in detail.

3) The Lasso and Ridge Regression

These are penalized regression methods, which sparsely 
spend degrees of freedom. To be discussed later.
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Example
Understanding how car drivers adjust their seat would greatly 
help engineers to design better cars. Thus, the measured

hipcenter = horizontal distance of hips to steering wheel

and tried to explain it with several predictors, namely:

Age age in years
Weight weight in pounds
HtShoes, Ht, Seated height w/o, w/ shoes, seated height
Arm, Thigh, Leg arm, thigh and leg length

We first fit a model with all these (correlated!) predictors
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Example: Fit with All Predictors
> library(faraway); data(seatpos)
> summary(lm(hipcenter~., data=seatpos))

Estimate Std. Error t value Pr(>|t|)  
(Intercept) 436.43213  166.57162   2.620   0.0138 *
Age           0.77572    0.57033   1.360   0.1843  
Weight        0.02631    0.33097   0.080   0.9372  
HtShoes      -2.69241    9.75304  -0.276   0.7845  
Ht            0.60134   10.12987   0.059   0.9531  
Seated        0.53375    3.76189   0.142   0.8882  
Arm          -1.32807    3.90020  -0.341   0.7359  
Thigh        -1.14312    2.66002  -0.430   0.6706  
Leg          -6.43905    4.71386  -1.366   0.1824  

Residual standard error: 37.72 on 29 degrees of freedom
Multiple R-squared: 0.6866, Adjusted R-squared: 0.6001 
F-statistic:  7.94 on 8 and 29 DF,  p-value: 1.306e-05
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Example: Generating New Variables
The body height is certainly a key predictors when it comes to 
the position of the driver seat. We leave this as it was, and 
change several of the other predictors:

age    <- Age
bmi    <- (Weight*0.454)/(Ht/100)^2
shoes  <- HtShoes-Ht
seated <- Seated/Ht
arm    <- Arm/Ht
thigh  <- Thigh/Ht
leg    <- Leg/Ht

Does this solve the correlation problem...?
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Example: New Correlation Matrix
We visualize again using function plotcorr() 
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Example: Fit with New Predictors
> summary(lm(hipc~., data=new.seatpos))

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -632.0063   490.0451  -1.290    0.207    
age           -0.7402     0.5697  -1.299    0.204    
bmi           -0.4234     2.2622  -0.187    0.853    
height         3.6521     0.7785   4.691 5.98e-05 ***
shoes          2.6964     9.8030   0.275    0.785    
seated      -171.9495   631.3719  -0.272    0.787    
arm          180.7123   655.9536   0.275    0.785    
thigh        141.2007   443.8337   0.318    0.753    
leg         1090.0111   806.1577   1.352    0.187    

Residual standard error: 37.71 on 29 degrees of freedom
Multiple R-squared: 0.6867, Adjusted R-squared: 0.6002 
F-statistic: 7.944 on 8 and 29 DF,  p-value: 1.3e-05 
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Variable Selection: Why?
We want to fit a regression model…

Case 1: functional form and predictors exactly known
 estimation, test, confidence and prediction intervals

Case 2: neither functional form nor the predictors are known
 explorative model search among potential predictors

Case 3: we are interested in only 1 predictor, but want to correct
for the effect of other covariates
 which covariates we need to correct for?

Question in cases 2 & 3: WHICH PREDICTORS TO USE?
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Variable Selection: Technical Aspects
We want to keep a model small, because of

1) Simplicity
 among several explanations, the simplest is the best

2) Noise Reduction
 unnecessary predictors leads to less accuracy

3) Collinearity
 removing excess predictors facilitates interpretation

4) Prediction
 less variables, less effort for data collection
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Method or Process?
• Please note that variable selection is not a method. The search 

for the best predictor set is an iterative process, which also 
involves estimation, inference and model diagnostics.  

• For example, outliers and influential data points will not only 
change a particular model – they can even have an impact on 
the model we select. Also variable transformations will have an 
impact on the model that is selected. 

• Some iteration and experimentation is often necessary for 
variable selection. The ultimate aim is finding a model that is 
smaller, but as good or even better than the original one.
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Example: Variable Selection
> summary(lm(hipc~., data=new.seatpos))

Estimate Std. Error t value Pr(>|t|)    
(Intercept) -632.0063   490.0451  -1.290    0.207    
age           -0.7402     0.5697  -1.299    0.204    
bmi -0.4234     2.2622  -0.187    0.853    
height         3.6521     0.7785   4.691 5.98e-05 ***
shoes          2.6964     9.8030   0.275    0.785    
seated      -171.9495   631.3719  -0.272    0.787    
arm          180.7123   655.9536   0.275    0.785    
thigh        141.2007   443.8337   0.318    0.753    
leg         1090.0111   806.1577   1.352    0.187    

Residual standard error: 37.71 on 29 degrees of freedom
Multiple R-squared: 0.6867, Adjusted R-squared: 0.6002 
F-statistic: 7.944 on 8 and 29 DF,  p-value: 1.3e-05 
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Backward Elimination
 Removing more than one variable at a time is problematic

• Start with the full model, and exclude the predictor with the 
highest p-value, as long as it exceeds 

• Refit the model with the reduced predictor set. Again exclude 
the least significant predictor if it exceeds 

• Repeat until all “non-significant” predictors are removed. 
Then, we stop and have found the final model.

Usually                 , for prediction also 0.15 or 0.20 

 R-demo…

crit

crit

0.05crit 
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Backward Elimination: Final Result

> summary(lm(hipc ~ age + height + leg, data=new.seatpos)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -696.6107   136.5691  -5.101 1.27e-05 ***
age           -0.5835     0.3789  -1.540    0.133    
height         3.7712     0.5800   6.502 1.94e-07 ***
leg         1141.0702   690.5917   1.652    0.108    

Residual standard error: 35.1 on 34 degrees of freedom
Multiple R-squared: 0.6817, Adjusted R-squared: 0.6536 
F-statistic: 24.27 on 3 and 34 DF,  p-value: 1.403e-08
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Interpretation of the Result
• The remaining predictors are now “more significant” than 

before. This is almost always the case. Do not overestimate 
the importance of these predictors!

• Collinearity among the predictors is usually at the root of this 
observation. The predictive power is first spread out among 
several predictors, then it becomes concentrated.

• Important: the removed variables can still be related to the 
response. If we run a simple linear regression, they can even 
be significant. In the multiple linear model however, there are 
other, better, more informative predictors.
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Forward Selection
 This is an analogue to the backward elimination. 

• Starts with an empty model, i.e. a model where only the 
intercept, but no predictors are present.

• We try all predictors one after the other and add the one 
which has the lowest p-value, provided it’s below . 

• Repeat until either all predictors are included in the model, or 
no further significant predictors can be found.

 Feasible in situation where          
 Computationally cheap, thus historically popular

crit

p n
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Stepwise Regression
 This is mix between forward and backward selection. 

• Forward and backward steps are carried out alternately. One 
can either start with the full model (1st step backward), or with 
the empty model (1st step forward). 

• In each forward step all predictors can be included in the 
model, even those that were removed in a previous step. 
In the backward steps, any predictor can be removed.

• Decisions can be based on p-values of the hypothesis tests.

 Often applied, is the default in R function step()
 However, step() is based on AIC/BIC, not on p-values
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Testing Based Variable Selection
What are the drawbacks of the forward, backward or stepwise
approach if based on the p-values of hypothesis tests?

1) Missing the „best“ model
 due to „one-at-a-time“ adding/dropping

2) Multiple testing problem
 p-values should not be taken too literally

3) Missing link to final objective
 hypothesis tests != prediction/explanation

4) Too small models
 for prediction, bigger models usually perform better
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All Subsets Regression
If there are m potential predictors, we can build models. 

- a complete, exhaustive search over all these models is
naturally only feasible if m is reasonably small

We need a means of comparison for models of different size!

1) Coefficient of determination

2) Test statistic or p-value of the global F-test

3) Estimated error variance

 all these are measuring goodness-of-fit: they improve when
more predictors are added to the model!

2m

2R

2ˆE
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AIC/BIC
Bigger models are not necessarily better than smaller ones!

 balance goodness-of-fit with the number of predictors used

AIC Criterion:

BIC Criterion:

2max(log ) 2
log( / ) 2

AIC likelihood p
const n RSS n p

  
  

2max(log ) log
log( / ) log

BIC likelihood p n
const n RSS n p n

  
  
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AIC or BIC?
Both can lead to similar decisions, but BIC punishes larger 
models more heavily:

 BIC models tend to be smaller!

• AIC/BIC is not limited to all subset regression 

• Criteria can also be (and are!) applied in the backward, 
forward or stepwise approaches. 

• In R, variable selection is generally done by function step()

• Default choice: stepwise regression with AIC as a criterion.
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Final Remark
• Every procedure may yield a different “best” model. 

• If we could obtain another sample from the same population, 
even a fixed procedure might result in another “best” model. 

• “Best model”: element of chance, “random variable”

How can we mitigate this in practice? 

It is usually advisable to not only consider the “best” model 
according to a particular procedure, but to check a few more 
models that did nearly as good, if they exist.
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Model Selection with Hierarchical Input
 Some regression models have a natural hierarchy. 

I.e. in polynomial models,     is a higher order term than

Important:  

Lower order terms should not be removed from the model 
before higher order terms in the same variable. As an 
example, consider the polynomial model:

 see blackboard…

2x x

2
0 1 2Y x x      
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Interactions and Categorical Input
Models with Interactions

Do not remove main effect terms if there are interactions with 
these predictors contained in the model.

Categorical Input

• If a single dummy coefficient is non-significant, we cannot just 
kick this term out of the model, but we have to test the entire 
block of indicator variables. 

• When we work manually and testing based, this will be done 
with a partial F-test. When working criterion based, step() 
does the right thing


