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Residual Analysis – Model Diagnostics
Why do it? And what is it good for?

a) To make sure that estimates and inference are valid
-
-
-
-

b) Identifying unusual observations
Often, there are just a few observations which "are not in 
accordance" with a model. However, these few can have 
strong impact on model choice, estimates and fit.  

Marcel Dettling, Zurich University of Applied Sciences
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Residual Analysis – Model Diagnostics
Why do it? And what is it good for?

c) Improving the model
- Transformations of predictors and response
- Identifying further predictors or interaction terms
- Applying more general regression models

• There are both model diagnostic graphics, as well as 
numerical summaries. The latter require little intuition and 
can be easier to interpret.

• However, the graphical methods are far more powerful and 
flexible, and are thus to be preferred!

Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Errors
All requirements that we made were for the errors    . However, 
they cannot be observed in practice. All that we are left with 
are the residuals    . 

But:

• the residuals     are only estimates of the errors    , and while 
they share some properties, others are different. 

• in particular, even if the errors     are uncorrelated with 
constant variance, the residuals     are not: they are 
correlated and have non-constant variance.

• does residual analysis make sense?
Marcel Dettling, Zurich University of Applied Sciences
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Standardized/Studentized Residuals
Does residual analysis make sense?

• the effect of correlation and non-constant variance in the 
residuals can usually be neglected. Thus, residual analysis 
using raw residuals     is both useful and sensible.

• The residuals can be corrected, such that they have constant 
variance. We then speak of standardized, resp. studentized
residuals.

, where                and               is small.  

• R uses these     for the Normal Plot, the Scale-Location-Plot 
and the Leverage-Plot.

Marcel Dettling, Zurich University of Applied Sciences
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Toolbox for Model Diagnostics
There are 4 "standard plots" in R:
- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:
- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Marcel Dettling, Zurich University of Applied Sciences
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Example in Model Diagnostics
Under the life-cycle savings hypothesis, the savings ratio 
(aggregate personal saving divided by disposable income) is 
explained by the following variables:

lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

pop15: percentage of population < 15 years of age
pop75: percentage of population > 75 years of age
dpi: per-capita disposable income
ddpi: percentage rate of change in disposable income

The data are averaged over the decade 1960–1970 to remove 
the business cycle or other short-term fluctuations.
Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
Plot the residuals     versus the fitted values       

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
Is useful for:
- finding structural model deficiencies, i.e. 
- if that is the case, the response/predictor relation could be

nonlinear, or some predictors could be missing
- it is also possible to detect non-constant variance 

( then, the smoother does not deviate from 0)

When is the plot OK?
- the residuals scatter around the x-axis without any structure
- the smoother line is horizontal, with no systematic deviation
- there are no outliers

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot

Marcel Dettling, Zurich University of Applied Sciences
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Tukey-Anscombe-Plot
When the Tukey-Anscombe-Plot is not OK:

• If structural deficencies are present (             , often also 
called "non-linearities"), the following is recommended:

- "fit a better model", by doing transformations on the 
response and/or the predictors

- sometimes it also means that some important predictors
are missing. These can be completely novel variables,
or also terms of higher order

• Non-constant variance: transformations usually help!
Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot
Plot the residuals     versus qnorm(i/(n+1),0,1)

Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot
Is useful for:
- for identifying non-Gaussian errors:

When is the plot OK? 
- the residuals     must not show any systematic deviation from

line which leads to the 1st and 3rd quartile. 
- a few data points that are slightly "off the line" near the ends

are always encountered and usually tolerable
- skewed residuals need correction: they usually tell that the

model structure is not correct. Transformations may help.
- long-tailed, but symmetrical residuals are not optimal either,

but often tolerable. Alternative: robust regression!
Marcel Dettling, Zurich University of Applied Sciences
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Normal Plot

Marcel Dettling, Zurich University of Applied Sciences
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Scale-Location-Plot
Plot         versus    

Marcel Dettling, Zurich University of Applied Sciences
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Scale-Location-Plot
Is useful for:
- identifying non-constant variance:
- if that is the case, the model has structural deficencies, i.e.

the fitted relation is not correct. Use a transformation!
- there are cases where we expect non-constant variance and 

do not want to use a transformation. This can the be tackled by
applying weighted regression.

When is the plot OK?
- the smoother line runs horizontally along the x-axis, without

any systematic deviations. 

Marcel Dettling, Zurich University of Applied Sciences
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Unusual Observations
• There can be observations which do not fit well with a 

particular model. These are called outliers.

• There can be data points which have strong impact on the 
fitting of the model. These are called influential observations.

• A data point can fall under none, one or both the above 
definitions – there is no other option.

• A leverage point is an observation that lies at a "different 
spot" in predictor space. This is potentially dangerous, 
because it can have strong influence on the fit.

Marcel Dettling, Zurich University of Applied Sciences
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Unusual Observations
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Unusual Observations
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How to Find Unusual Observations?
1) Poor man‘s approach

Repeat the analysis -times, where the -th observation is
left out. Then, the change is recorded.

2) Leverage
If      changes by      , then          is the change in     .
High leverage for a data point (                       ) means that it 
forces the regression fit to adapt to it.

3) Cook‘s Distance

Be careful if Cook's Distance > 1.

iy iy ii ih y ˆiy
2( 1) /iih p n 

2 *2
( )
2

ˆ( )
( 1) 1 ( 1)

j j i ii i
i

ii

y y h rD
p h p


  

  


n i



21

Applied Statistical Regression
HS 2011 – Week 07

Leverage-Plot
Plot the residuals     versus the leverage      

Marcel Dettling, Zurich University of Applied Sciences
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Leverage-Plot
Is useful for:
- identifying outliers, leverage points and influential observation

at the same time. 

When is the plot OK?
- no extreme outliers in y-direction, no matter where
- high leverage, here  

is always potentially dangerous, especially if it is in 
conjunction with large residuals!

- This is visualized by the Cook's Distance lines in the plot:
>0.5 requires attention, >1 requires much attention!

Marcel Dettling, Zurich University of Applied Sciences
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Leverage-Plot
What to do with unusual observations:

• First check the data for gross errors, misprints, typos, etc. 

• Unusual observations are also often a problem if the input is 
not suitable, i.e. if predictors are extremely skewed, because 
first-aid-transformations were not done. Variable transfor-
mations often help in this situation. 

• Simply omitting these data points is not a very good idea. 
Unusual observations are often very informative and tell 
much about the benefits and limits of a model. 

Marcel Dettling, Zurich University of Applied Sciences
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Toolbox for Model Diagnostics
There are 4 "standard plots" in R:
- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:
- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. (Potential) Predictors
General Remark:

We are allowed to plot the residuals versus any arbitrary 
variable we wish. This includes:

•   predictors that were used in fitting the model
•   potential predictors which were not (yet) used in the model
•   in particular also the time/sequence of the observations

All these plots have one thing in common:

All these residual plots must not show any structure. If they do, 
the model has some deficiencies, and can be improved!
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. (Potential) Predictors
Example:

This dataset deals with the prestige of Canadian occupations. 
There are 102 different observations and 6 columns:

educ income  women prest cens type

gov.administrators 13.11  12351  11.16  68.8  1113  prof 

general.managers 12.26  25879   4.02  69.1  1130  prof 

accountants 12.77   9271  15.70  63.4  1171  prof

We start with fitting the model: prestige ~ income + education, 
but do not take into account any of the remaining predictors.

Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Potential Predictors
> scatter.smooth(census, resid(fit), col="red", pch=20)
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Residuals vs. Potential Predictors
> boxplot(resid(fit) ~ type)

bc prof wc

-1
5

-1
0

-5
0

5
10

15

Residuen vs. Type



29

Applied Statistical Regression
HS 2011 – Week 07

Motivation for Partial Residual Plots
Problem:

We sometimes want to learn about the relation between a 
predictor and the response, and also visualize it. Is it also of 
importance whether it is directly linear.

How can we infer this?

•   we can plot     versus predictor        
•   however, the problem is that all the other predictors also

influence the response and thus blur our impression
•   thus, we require a plot which shows the "isolated" influence

of predictor     on the response     
Marcel Dettling, Zurich University of Applied Sciences
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Partial Residual Plots
Idea:

We remove the estimated effect of all the other predictors from 
the response and plot this versus the predictor     . 

We then plot these so-called partial residuals versus the 
predictor    . We require the relation to be linear!

Partial residual plots in R:
- library(car); crPlots(...)
- library(faraway); prplot(...)

Marcel Dettling, Zurich University of Applied Sciences
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Partial Residual Plots: Example
We try to predict the prestige of a number of 102 different 
profession with a set of 2 predictors:

prestige ~ education + income

> data(Prestige)
> head(Prestige)

education income women prestige census type
gov.administrators      13.11  12351 11.16     68.8   1113 prof
general.managers        12.26  25879  4.02     69.1   1130 prof
accountants             12.77   9271 15.70     63.4   1171 prof
purchasing.officers     11.42   8865  9.11     56.8   1175 prof
chemists                14.62   8403 11.68     73.5   2111 prof
...
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + income, data=Prestige)

crPlots(fit, layout=c(1,1))
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + income, data=Prestige)

crPlots(fit, layout=c(1,1))

0 5000 10000 15000 20000 25000

-2
0

-1
0

0
10

20

income

C
om

po
ne

nt
+R

es
id

ua
l(p

re
st

ig
e) Evident non-linear

influence of income
on prestige.

 not a good fit!
 correction needed
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Partial Residual Plots: Example
library(car); data(Prestige)

fit <- lm(prestige ~ education + log(income), Prestige)

crPlots(fit, layout=c(1,1))

After a log-trsf of
predictor 'income',
things are fine
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Partial Residual Plots
Summary:

Partial residual plots show the marginal relation between a 
predictor     and the response   . 

When is the plot OK?

If the red line with the actual fit, and the green line of the 
smoother do not show systematic differences.

What to do if the plot is not OK?
- apply a transformation
- use Generalized Additive Models (GAM, tbd later)

Marcel Dettling, Zurich University of Applied Sciences
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Checking for Correlated Errors
Background:

For LS-fitting we require uncorrelated errors. For data which 
have timely or spatial structure, this condition happens to be 
violated quite often.

Example:
- library(faraway); data(airquality)
- Ozone ~ Solar.R + Wind
- Measurements from 153 consecutive days in New York
- data have a timely sequence

 to be handled with care!
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Time/Index
> plot(resid(fit)); lines(resid(fit))

0 20 40 60 80 100

-4
0

-2
0

0
20

40
60

80

Index

re
si

d(
fit

)

Residuen vs. Zeit/Index

Marcel Dettling, Zurich University of Applied Sciences



38

Applied Statistical Regression
HS 2011 – Week 07

Alternative: Durbin-Watson-Test
The Durbin-Watson-Test checks if consecutive 
observations show a sequential correlation: 

Test statistic:

- under the null hypothesis "no correlation", the test statistic 
has a    - distribution. The p-value can be computed. 

- the DW-test is somewhat problematic, because it will only 
detect simple correlation structure. When more complex 
dependency exists, it has very low power. 

Marcel Dettling, Zurich University of Applied Sciences
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Durbin-Watson-Test
R-Hints:

library(lmtest)

> dwtest(Ozone ~ Solar.R + Wind, data=airquality)

Durbin-Watson test

data:  Ozone ~ Solar.R + Wind 

DW = 1.6127, p-value = 0.01851

alternative hypothesis: true autocorrelation is greater than 0 

The null hypothesis is rejected. We conclude that the residuals 
are correlated. For more details, see the exercises...
Marcel Dettling, Zurich University of Applied Sciences
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Residuals vs. Time/Index
When is the plot OK?

- There is no systematic structure present
- There are no long sequences of pos./neg. residuals
- There is no back-and-forth between pos./neg. residuals

What to do if the plot is not OK?
1) Search for and add the "forgotten" predictors
2) Using the generalized least squares method (GLS)
 to be discussed in Applied Time Series Analysis

3) Estimated coefficients and fitted values are not biased, but 
confidence intervals and tests are: be careful! 

Marcel Dettling, Zurich University of Applied Sciences
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Further Strategies for Problem Solving
Where are we?

• We know the model assumptions and the standard plots for 
diagnostics. And we also know how we can identify problems 
in these plots.

• So far, we discussed how "non-linear" relations (i.e. missing 
transformations in response/predictors) can be recognized, 
or how we can identify missing predictors. 

• Now, we will be discussing two specific model violations, 
which cannot be dealt with using transformations: these are 
non-constant variance and long-tailed errors. 

Marcel Dettling, Zurich University of Applied Sciences
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Weighted Regression
When to use?

Weighted regression is used when symmetrically distributed 
errors have zero expectation, but, according to the Scale-
Location-Plot, have non-constant variance. 

Important:

If non-constant variance is observed together with non-
optimal model structure, and/or skewly distributed errors, 
then weighted regression is not the right tool. In that case, 
better search for a response/predictor transformation.

Marcel Dettling, Zurich University of Applied Sciences
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Weighted Regression: Model
The model is:

, wobei

 For the non-weighted ordinary least squares regression, the
error covariance matrix is the identity:   

We still assume uncorrelated errors, but no longer do we
assume uncorrelated errors. The covariance matrix can thus
be: 
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Weighted Regression: And Now?
In a weighted least squares problem, the regression
coefficients are estimated by minimizing a weighted sum of
squares: 

If the design matrix has full rank, this minimization problem has 
an explicit and unique solution. Moreover: 

- Observations with small variance (i.e. where one is "sure" 
about the position of the data point) obtain large weight in 
the regression fit, and vice versa. 
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Where Are the Weights from?
1) If the response      is the mean from several independent 

observations, but not the same number of every data point. 
Then use:           .       

Example: Regression where daily cost in a mental hospital
is explained with some socio-demographic predictors. The 
response variable is:

"Total cost for the stay" / "Length of stay in days"

The bigger the number of days that were used for
assessing the cost, the more precise (=lower variance) the
average cost is determined.
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Where are the weights from?
2) One knows or can easily see that the variance in the

residuals is proportional to a predictor.
Then, we use: 

Example: see Exercises...

3) If non-constant variance is only "observed", but the cause is 
unknown (with respect to 1) and 2) above), the we can still 
try to first fit an ordinary least squares regression and use it 
for estimating weights, which will then be used in an 
weighted linear regression.

Example: none...

1/i iw x


