
Tutorial
S.f.Statistik, ETHZ October 6, 2011

Introduction
This tutorial will give you some basic knowledge about working with R. It will also help
you to familiarize with an environment to work with R as it is provided in the computing
labs in the ETH main building.

About R
R is free software (copyright: GNU public license) and is available from http://stat.

ethz.ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An
Introduction to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for
Beginners / R pour les débutants” (31 pages, English/French).

R-environments
A “professional” way of working with R is to edit R-script files in an editor and to transfer
the written code to a running R process. This can be set up on any platform. There are
many editors that support this. We recommend the use of R Studio, which is available for
all common platforms (http://rstudio.org).

Alternatives are the editor that comes bundled with R (syntax highlighting exists only
on Mac OS X), Emacs with the add-on package Emacs Speaks Statistics (http://stat.
ethz.ch/ESS/), TinnR (http://www.sciviews.org/Tinn-R/) and WinEdt on Windows
(http://www.winedt.com/). This tutorial will focus on working with R Studio.

Getting started with R Studio
We use R from within R Studio. To start R Studio, find it in the applications menu or
type rstudio in a terminal.

R Studio combines all ressources required for programming R in a single tidy window, see
Fig. 1. The pane console contains a instance of R. It is not necessary to start R separately.

Figure 1: The working environment provided by R Studio. The standard pane layout
consists of (clockwise, starting top left) the source editor, the workspace and history pane,
the files, help and graphics browser, and the R-console.

1

R-basics
Type in the R-console:
> x <- 2 (press <RETURN>)
> x (press <RETURN>)
Result: [1] 2

The assignment operator <- has created an object x. R is vector-oriented, so x is a vector
with one element of value 2.

Remark: You can write <- using the shortcut “<Alt>+-” (i.e., the keys <Alt>and “-”
pressed at the same time).

Next try (all commands are followed by <RETURN>; this is omitted from now on):
> y <- c(3,5) (c for combine)
> y

Result: [1] 3 5, a vector with two elements.

ls() shows all objects you have already generated. To remove x, use rm(x).

Note that many functions are already defined in R (for example c, t, max, . . .). We
advise you to use different names for your variables to avoid confusion.

R includes demonstrations for many functions. You can get a list of all demonstrations
with demo(). For example, take a look at the graphics demo of R: demo(graphics). This
will display a variety of plots generated by R. Hitting <RETURN> in the console will allow
you to go from one graphic to the next one.

Working with an .R (script-)file
Create a new script file via File → New → R Script. You should now see four panes
just as in Fig. 1. Save the file as tutorial.R via File → Save. From Now on, your R
instructions should be typed in this script-file. Make sure to comment your code (with
the symbol #) as you go on.

In the editor pane tutorial.R, type z <- c(8,13,21) as first line and 2*z as second line.

You have several options to send your R-code to the R-window:

1. Click on . All the code of your script is sent to the R-console.

2. Point the cursor on the first line. Then click on . Only the selected line (first)
is be sent to the R-console. The cursor now points on the next line (second). Redo

to send the second line to the R-console, and so on.

3. Select the code to be sent to the R-console. Then click on . This will send the
whole selection to the R-console.

4. Instead of clicking on with your mouse, you can press “<Ctrl>+<RETURN>”
(i.e., the <Ctrl> key and <RETURN> at the same time). Both are equivalent.

Remark:
Sometimes the evaluation of an R-file takes too long (usually if you have errors in some
loops). At any time you can interrupt the evaluation by clicking (this will only show
up when R is calculating something) or clicking in the R-console and pressing <Esc>.

From now on you should write (almost) all R-instructions into the *.R-file to evaluate
them from there. At the end, you can save your script file by clicking on File → Save.

2

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as next line of tutorial.R (gives the first eight Fibonacci-
numbers). Evaluate the line, and take a look at fib. Type 2*fib+1, fib*fib and
log(fib) as next three lines of tutorial.R. Mark all three lines with the left mouse button
and send them to the R-console. This evaluates all marked lines. Check the results. Do
you understand them?

Now create the sequence 2, 4, 6 as object s: s<-2*(1:3), alternatively s<-seq(2,6,by=2).
Take a look at fib[3], fib[4:7], fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0

and fib[x > 0].

Don’t forget to put comments in your script file. Up to now, it could for example look
like this:

Computational Statistics -- R tutorial

Author: Hans Muster

Date: 26 Feb 2010

getting started

z <- c(8,13,21)

2*z

computing with vectors

fib <- c(1,1,2,3,5,z) # vector with first 8 Fibonacci numbers

fib

2*fib + 1 # element-wise operations

fib*fib # element-wise multiplication

log(fib) # takes the log of each element

s <- 2*(1:3) # vector holding 2, 4, 6

s1 <- seq(2,6,by=2) # same vector as s

fib[3] # 3rd element of vector fib

fib[4:7] # 4th, 5th, 6th and 7th element of fib

fib[s] # 2nd, 4th and 6th element of fib

fib[c(3,5)] # elements 3 and 5 of fib

fib[-c(3,5)] # vector fib without elements 3 and 5

x <- c(1,-3,5,-1,8,9,-2,1) # new vector x

x > 0 # elements 1, 3, 5, 6 and 8 of x are > 0

fib[x > 0] # elements 1, 3, 5, 6 and 8 of fib

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a
look at the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] and mat2[,1].

Computation with matrices using +, * etc. follows the same rules as computation with
vectors, namely element-wise. For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and
matrices is that matrices need all elements to be of the same type (e.g. numeric, character),
while data frames allow every column to have another type.

Reading and looking at datasets
ASCII-data is most easily read by read.table, which generates a data frame. read.table
works also for datasets from the web. Try:
stream <- read.table("http://stat.ethz.ch/Teaching/Datasets/NDK/stream.dat",

header=TRUE)

The dataset stream contains the concentration of zinc scaled in four levels (variable ZINC)

3

from different rivers (variable STREAM). In addition the variable DIVERSITY, which de-
picts the species diversity of the river. The variable ZNGROUP encodes the zinc levels
numerically. You may examine the object directly by stream. Single variables are acces-
sible by stream[,"ZINC"]. You may take a look at the original file, in particular its first
line, to understand why R knows the name of the variable. This can be done by calling the
above URL from a web browser, e.g. Firefox or Mozilla. The parameter header=TRUE of
read.table tells R that the variable names are in the first line of the data frame. stream
is a small dataset so it can be displayed by calling it directly, but in general it is useful
to use the str function, which displays the structure and type of an object, but not all
elements: str(stream). We see that the variable ZINC is already identified as a factor.
However the variable ZNGROUP is identified as a continuous variable.

summary(stream) displays information about the columns of stream. summary extracts
the most important information from lots of R-objects, e.g., the results of statistical tests
or model fits.

Graphics
Draw a histogram of the DIVERSITY-values of the stream-data.
par(mfrow = c(1,2)) # Number of pictures one below the other [1] or side by side [2]

important to save paper!
hist(stream[,"DIVERSITY"]) # draw histogram.

Now draw a scatter-plot of the diversity against ZNGROUP:
plot(stream[,"ZNGROUP"],stream[,"DIVERSITY"]) # produces the scatter-plot.

Compute an analysis of variance in order to test if there is a difference in diversity for
different amounts of zinc: Therefore you first have to change ZNGROUP into a factor.
stream[,"ZNGROUP"] <- as.factor(stream[,"ZNGROUP"])

fit.av <- aov(DIVERSITY ∼ ZNGROUP, data = stream) # ANOVA.
summary(fit.av) # returns the model summary.

In order to check the normality assumptions draw a normal Q-Q plot:
You can extract the residuals of fit.av with resid(fit.av) and the fitted values
with fitted(fit.av).
par(mfrow = c(1,1)) # setting device back to one picture.
qqnorm(resid(fit.av)) # draws the normal Q-Q plot.
qqline(resid(fit.av)) # adds the corresponding diagonal.

title("Titel xy") adds a title to your graphic and clicking the print button in the
RGraphics window prints the graphic.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphic functions (such as qqline). The former make up a new graphic, while the latter
add something to existing graphics.

Getting help
If you want to know the details about functions, you can use the R-help-system. For
example, help(plot) explains the plot-function (also try ?plot). You can execute the
example at the end of the help page by example(plot).

4

If you look for help about some topic without knowing the function names, e.g., about
histograms, help.search("histogram") delivers a list of functions which correspond to
the keyword. In parentheses you find the name of the package to which the function
belongs. Most functions used by us in the beginning are contained in the package “base”,
which is automatically loaded. Other packages must be loaded by require(package),
before their functions and help pages are accessible.

Ending R
You can save your work by saving the file of instructions tutorial.R (see above; of course
it is useful to use new files for new projects, e.g., exercise1.R, exercise2.R, . . .). The
instructions have to be evaluated again to restore your work. R-objects may be saved also
by the functions save and write.table.

The function q() terminates the R-session (this is the same as File → Quit R). Answer
n to the question Save workspace image?.

More to come
R can be used to create complex programs and functions. You may take a look at
help(for) for control-flow constructs or at help(function) for creating functions.

5

