
Chapter 7

Flexible regression and
classification methods

7.1 Introduction

The curse of dimensionality makes it virtually impossible to estimate a regression func-
tion m(x) = E[Y |X = x] or the probability functions πj(x) = P[Y = j|X = x] (for
classification) in a full nonparametric way without making some structural assumptions.

We are going to describe some flexible models and methods which are of nonparametric
nature but making some structural assumptions. In the sequel, we will denote either a
regression function E[Y |X = x] or the logit transform in a binary classification problem
log(π(x)/(1− π(x)) by

g(·) : Rp → R.

7.2 Additive models

Additive models require additivity of the function: the model is

gadd(x) = µ +
p∑

j=1

gj(xj), µ ∈ R

gj(·) : R→ R, E[gj(Xj)] = 0 (j = 1, . . . , p).

The functions gj(·) are fully nonparametric. The requirement about E[gj(Xj)] = 0 yields
an identifiable model; note that otherwise we could add and subtract constants into the
one-dimensional functions gj(·).

Additive models are generalizations of linear models. While the additive functions
are very general, they do not allow for interaction terms such as gj,k(xj , xk)1. The curse
of dimensionality is not present in additive models. When assuming continuous second
derivatives for all the functions gj , it can be shown that some estimators ĝadd(·) have mean
square error rate O(n−4/5) as for estimating a single one-dimensional (R→ R) function.

1as a matter of fact, both the original Hastie-Tibshirani and the new algorithm in mgcv allow for
bivariate interactions, optionally

59

60 Flexible regression and classification methods

7.2.1 Backfitting for additive regression models

Backfitting is a very general tool for estimation in additive (and other) structures. We can
use “any” nonparametric smoothing technique for estimating one-dimensional functions.
A smoother against the predictor variables X1j , . . . Xnj is denoted by the hat operator

Sj : (U1, . . . , Un)ᵀ 7→ (Û1, . . . , Ûn)ᵀ (j = 1, . . . p)

for any response vector (U1, . . . , Un)ᵀ. The subscript j indicates that smoothing is done
against the jth predictor variable. For example, Sj could be smoothing splines with the
same degrees of freedom for all j, e.g. equal to 5 or estimated by (generalized) cross-
validation. Or they could be Nadaraya-Watson Gaussian kernel estimators with the same
bandwidth which may be estimated by (generalized) cross-validation.

Backfitting for additive regression then works as follows.

1. Use µ̂ = n−1
∑n

i=1 Yi. Start with ĝj(·) ≡ 0 for all j = 1, . . . , p.

2. Cycle through the indices j = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . while computing

ĝj = Sj(Y − µ̂1−
∑
k 6=j

ĝk),

where Y = (Y1, . . . , Yn)ᵀ and ĝj = (ĝj(X1j), . . . , ĝj(Xnj))ᵀ. Stop the iterations if
the individual functions ĝj(·) do not change much anymore, e.g.,

‖ĝj,new − ĝj,old‖2
‖ĝj,old‖2

≤ tol

where tol is a tolerance such as 10−6.

3. Normalize the functions

g̃j(·) = ĝj(·)− n−1
n∑

i=1

ĝj(Xij).

We may view backfitting as a method to optimize a high-dimensional (penalized)
parametric problem. For example, with smoothing spline smoothers, we have seen in
chapter 3 that the smoothing spline fit can be represented in terms of basis functions
and we have to solve a penalized parametric problem. Backfitting can then be viewed
as a coordinate-wise optimization method which optimizes one coordinate (corresponding
to one predictor variable) at a time while keeping all others (corresponding to all other
predictors) fixed. This coordinate-wise optimization may be slow but backfitting is a very
general overall method which directly allows to use one-dimensional smoothing algorithms.

7.2.2 Additive model fitting in R

Additive models can be fitted in R with the function gam (generalized additive model)
from package mgcv. The term “generalized” allows also to fit additive logistic regression,
among other things.

The function gam uses for the smoothers Sj a penalized regression spline: i.e., a spline
with selected knots including a penalty term (this is somewhat different than a smoothing
spline). Interestingly, the function will choose the degrees of freedom, which may be

7.2 Additive models 61

different for every fitted function ĝj(·), via generalized cross-validation: in particular, this
allows to use more degrees of freedom for “complex” functions and few degrees of freedom
for functions which seem “simple”.

We consider as an example the daily ozone concentration in the Los Angeles basin as
a function of 9 predictor variables. The commands and output in R look as follows.

library(mgcv)
data(ozone, package = "gss")
d.ozone ← ozone; colnames(d.ozone)[c(1,2,3,4)] ← # ‘‘better’’ names

pairs(d.ozone, pch = ".", gap = 0.1) # --> Scatterplot Matrix

O3

5300 5700 20 60 0 3000 0 150 0 200

0
20

53
00

57
00

vdht

wind

0
10

20

20
60 humidity

temp

30
60

90

0
30

00

ibht

dgpg
−5

0
50

0
15

0 ibtp

vsty

0
15

0
35

0

0 20

0
20

0

0 10 20 30 60 90 −50 50 0 150 350

day

Figure 7.1: Daily ozone concentration in the Los Angeles basin as a function of 9 predictor
variables.

fit ←
gam(O3 ~ s(vdht)+s(wind)+s(humidity)+s(temp)+s(ibht)+s(dgpg)+s(ibtp)+s(vsty)+s(day),

data = d.ozone)
summary(fit)

.

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7758 0.1988 59.22 <2e-16 ***

62 Flexible regression and classification methods

Approximate significance of smooth terms:

edf Est.rank F p-value

s(vdht) 1.000 1 9.360 0.00242 **

s(wind) 1.000 1 4.375 0.03729 *

s(humidity) 3.631 8 2.595 0.00933 **

s(temp) 4.361 9 4.694 7.56e-06 ***

s(ibht) 3.043 7 1.708 0.10658

s(dgpg) 3.230 7 7.916 7.94e-09 ***

s(ibtp) 1.939 4 1.809 0.12698

s(vsty) 2.232 5 3.825 0.00225 **

s(day) 4.021 9 10.174 1.04e-13 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.797 Deviance explained = 81.2%

GCV score = 14.137 Scale est. = 13.046 n = 330

The column edf shows the estimated (via GCV) degrees of freedom: if they are equal to
1, a linear straight line is fitted. We get an indication about the relevance of a predictor

5300 5400 5500 5600 5700 5800 5900

−1
2

−8
−4

0
2

4
6

8

vdht

s(
vd

ht
,1

)

0 2 4 6 8 10 12 14 16 18 20

−1
2

−8
−4

0
2

4
6

8

wind

s(
w

in
d,

1)

20 30 40 50 60 70 80 90

−1
2

−8
−4

0
2

4
6

8

humidity

s(
hu

m
id

ity
,3

.6
3)

25 35 45 55 65 75 85 95

−1
2

−8
−4

0
2

4
6

8

temp

s(
te

m
p,

4.
36

)

0 500 1500 2500 3500 4500

−1
2

−8
−4

0
2

4
6

8

ibht

s(
ib

ht
,3

.0
4)

−60 −20 0 20 40 60 80 100

−1
2

−8
−4

0
2

4
6

8

dgpg

s(
dg

pg
,3

.2
3)

0 50 100 150 200 250 300

−1
2

−8
−4

0
2

4
6

8

ibtp

s(
ib

tp
,1

.9
4)

0 50 100 150 200 250 300 350

−1
2

−8
−4

0
2

4
6

8

vsty

s(
vs

ty
,2

.2
3)

0 50 100 150 200 250 300 350

−1
2

−8
−4

0
2

4
6

8

day

s(
da

y,
4.

02
)

Figure 7.2: Estimated function ĝj for the ozone data set.

either from Figure 7.2 or from the P -values in the summary output from R .
The fit of the model can be checked via residual analysis as in chapter 1. The Tukey-

Anscombe plot indicates heteroscedastic errors. We thus try the log-transform for the
response variable and re-do the whole analysis. The results are given below.

7.2 Additive models 63

0 5 10 15 20 25 30

−1
2

−1
0

−8
−6

−4
−2

0
2

4
6

8
10

TA−pl: gam(O3 ~ s(vdht) + s(wind) + s(humidity) + s(temp) + s(ibht) + s(dgpg) + s(ibtp) + s(vsty) + s(day))

Fitted values

R
es

id
ua

ls

o o

o o

oo

o

o
o o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o
o o

o

o

o

o
o

o

o
o

o o

o

oo o

o
o

o

oo

o o o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o o

o

o o

o

o
o

o

o

o

o
o

o
o

o

o

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o o
o

o

o
o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o
o

oo

oo

o

o

o

o

o

o o
o

o o

o

o

o

o

o

o

TA.plot(lm.res = fit, labels = "o", show.2sigma = FALSE, cex.main = 1.05)

−.−.−.− : lowess smooth (f = 0.39 , it= 0)

Figure 7.3: Tukey-Anscombe plot for the ozone data set.

5300 5400 5500 5600 5700 5800 5900

−1
.2

−0
.8

−0
.4

0.
0

0.
4

vdht

s(
vd

ht
,1

)

0 2 4 6 8 10 12 14 16 18 20

−1
.2

−0
.8

−0
.4

0.
0

0.
4

wind

s(
w

in
d,

2.
53

)

20 30 40 50 60 70 80 90

−1
.2

−0
.8

−0
.4

0.
0

0.
4

humidity

s(
hu

m
id

ity
,2

.3
5)

25 35 45 55 65 75 85 95

−1
.2

−0
.8

−0
.4

0.
0

0.
4

temp

s(
te

m
p,

3.
77

)

0 500 1500 2500 3500 4500

−1
.2

−0
.8

−0
.4

0.
0

0.
4

ibht

s(
ib

ht
,2

.8
)

−60 −20 0 20 40 60 80 100

−1
.2

−0
.8

−0
.4

0.
0

0.
4

dgpg

s(
dg

pg
,3

.2
5)

0 50 100 150 200 250 300

−1
.2

−0
.8

−0
.4

0.
0

0.
4

ibtp

s(
ib

tp
,1

)

0 50 100 150 200 250 300 350

−1
.2

−0
.8

−0
.4

0.
0

0.
4

vsty

s(
vs

ty
,5

.7
3)

0 50 100 150 200 250 300 350

−1
.2

−0
.8

−0
.4

0.
0

0.
4

day

s(
da

y,
4.

61
)

1.0 1.5 2.0 2.5 3.0 3.5

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

TA−pl: gam(log(O3) ~ s(vdht) + s(wind) + s(humidity) + s(temp) + s(ibht) + s(dgpg) + s(ibtp) + s(vsty) + s(day))

Fitted values

R
es

id
ua

ls o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo
o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o
o

o

o

oo

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o oo o

o

o

o

o

o

o

o

o

o
o

o

oo

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

oo

o

o

o

o

o

o

o

o
o

o
o

o

o o o

o

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

oo

o
o

o

oo

o

o

o

ooo

o
o

o

o

o o

oo

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

TA.plot(lm.res = fit1, labels = "o", cex.main = 1)

−.−.−.− : lowess smooth (f = 0.39 , it= 0)

Figure 7.4: Estimated additive functions and Tukey-Anscombe plot for the ozone dataset
with log(O3) as the response variable.

64 Flexible regression and classification methods

7.3 MARS

MARS is a shortcut for multivariate adaptive regression splines. MARS is an adaptive
procedure for regression and it is often useful for high-dimensional problems with many
predictor variables.

MARS uses expansions in piecewise linear basis functions of the form

(xj − d)+ =
{

xj − d if xj > d,
0 otherwise.

and (d − xj)+. The value d is a knot and xj (j ∈ {1, . . . , p}) is the j-th component of
x ∈ Rp. The pair (xj−d)+, (d−xj)+ is called a reflected pair. Note that we use (xj−d)+
as a function of x (∈ Rp) where only the jth component of x is relevant. The collection of
reflected pairs is then a set of basis functions

B = {(xj − d)+, (d− xj)+; d ∈ {x1,j , x2,j , . . . , xn,j}, j ∈ {1, . . . , p}} ,

where we note that in the univariate case (p = 1), B spans the space of continuous piecewise
linear functions, i.e., linear splines.

MARS employs now a forward selection of reflected pairs of basis functions in B and
their products. The model has the form

g(x) = µ +
M∑

m=1

βmhm(x),

where each function hm(·) is a function from the basis B or a product of functions from
B. The model building technique is going in a forward way as follows:

1. Start with the function h0(x) ≡ 1. Initialize the model set M = {h0(·) ≡ 1}. Fit
the function h0 by least squares regression, yielding the estimate µ̂ = n−1

∑n
i=1 Yi.

2. For r = 1, 2, . . . do the following:
Search for the best pair of functions ((h2r−1(·), h2r(·)) which are of the form

h2r−1(·) = h`(·)× (xj − d)+,

h2r(·) = h`(·)× (d− xj)+, (7.1)

for some h` in the model set M, and some basis functions in B. The best pair of
functions is defined to be the one which reduces residual sum of squares most.
The model fit is then

ĝ(x) = µ̂ +
2r∑

m=1

β̂mhm(x),

where the coefficients β̂m are estimated by least squares.
Enlarge the model set in every iteration (with index r) by

M =Mold ∪ {h2r−1(·), h2r(·)},

with the functions h2r−1, h2r from (7.1).

3. Iterate step 2 until a large enough number of basis functions hm(·) has been fitted.

4. Do backward deletion of those pairs of functions h2r−1(·), h2r(·) which increase the
residual sum of squares the least.

7.4 Neural Networks 65

5. Stop the backward deletion by optimizing a GCV score.

For example, the trace of solutions could look as follows:

h0(x) = 1, M = {1},
h1(x) = (x2 − x72)+, h2(x) = (x72 − x2)+, M = {1, (x2 − x72)+, (x72 − x2)+},
h3(x) = (x72 − x2)+ · (x1 − x51)+, h4(x) = (x72 − x2)+ · (x51 − x1)+,

M = {1, (x2 − x72)+, (x72 − x2)+, (x72 − x2)+ · (x1 − x51)+, h4(x) }
. . .

7.3.1 Hierarchical interactions and constraints

It becomes clear from the definition of MARS, that the algorithm proceeds hierarchically
in the sense that a d-order interaction can only enter the model when an interaction
of degree d − 1 involving one predictor less is already in the model. For example, an
interaction of degree 4 involving x2, x4, x7, x9 enters the model because an interaction of
degree 3 involving the predictors x2, x4, x7 is already in the model.

Quite often it is useful to restrict interactions to degree 2 or 3. Sometimes, we may
even restrict the interaction degree to 1: MARS then yields an additive model where
the predictor variables and the piecewise linear spline basis functions are included in a
forward-backward adaptive way.

7.3.2 MARS in R

MARS is implemented in R in the function mars from the package mda. The syntax is as
follows:

fit <- mars(x, y, degree=2)
#x is the n*p design matrix; y is the response vector

predict(fit,x=xnew)
#xnew is a new (test) set of predictors of dimension ntest*p

7.4 Neural Networks

Neural networks have been very popular in the 90’s in the machine learning and artificial
intelligence communities. From a statistical perspective, they can be viewed as high-
dimensional nonlinear regression models.

We will focus here on feedforward neural nets with one hidden layer. The model is

gk(x) = f0

αk +
q∑

h=1

whkφ
(
α̃h +

p∑
j=1

wjhxj

) . (7.2)

which is predicting multivariate (gk)k where for regression only g0 is used and for classifi-
cation, one typically uses g0, . . . , gJ−1 and ĝ(x) := arg max

j
ĝj(x) which is called “softmax”

in the NN literature. The function φ(·) is usually the sigmoid function

φ(x) =
exp(x)

1 + exp(x)
,

66 Flexible regression and classification methods

Inputs
Hidden
 Units Outputs

1

2

p

j :

1

q

h : 1

2

k :
wj, h

wh, k

Figure 7.5: Simple “feed-forward” neural net with one hidden layer.

wheras f0(·) is typically chosen as the identity for regression and as the sigmoid φ(x) for
softmax classification. The whk, wjk, α̃h, αk all are unknown parameters. The so-called

input layer consists of the p predictor variables; the values whkφ
(
αh +

∑p
j=1 wjhxj

)
(h =

1, . . . , q) make the so-called hidden layer with q units. And the so-called output layer is
just a single unit for univariate regression.

A useful variant of (7.2) is a model which includes a linear regression component:

g(x) = f0

α +
p∑

j=1

wj,linxj +
q∑

k=1

wkφ(αk +
p∑

j=1

wjkxj)

 . (7.3)

7.4.1 Fitting neural networks in R

Feedforward neural nets can be fitted in R with the function nnet from the package nnet.
In practice, it can be very important to center and scale all the predictor variables

so that they are approximately on the same scale (about “1”). This avoids that gradient
methods for optimizing the likelihood get stuck in the “flat regions” of the sigmoid func-
tions. Further note that one can regularize the problem using so called weight decay which
stabilizes the algorithm (less dependence on random starting values w∗,∗) and diminishes
the importance of choosing the number of hidden units q.

library(nnet)
Using ’d.ozone’ data from above, using log(O3)
and scaling the x-variables (to mean = 0, sd = 1):
sc.ozone <- data.frame(scale(d.ozone)[, -1],

log.O3 = log(d.ozone[,"ozone"]))

> set.seed(22) ## (also try others; nnet() uses random starting values!)
> fit <- nnet(log.O3 ~ . , data= sc.ozone, size = 3, skip = TRUE,
+ decay = 4e-4, linout = TRUE, maxit = 500)
weights: 43

initial value 2943.804833

iter 10 value 568.319707

7.5 Projection pursuit regression 67

......

......

final value 34.631788

converged

> sum(residuals(fit)^2) # -> 34.211
> summary(fit)
a 9-3-1 network with 43 weights

a 9-3-1 network with 43 weights

options were - skip-layer connections linear output units decay=4e-04

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1

-2.28 1.27 -0.34 -2.57 1.46 0.03 0.10 -1.02 -0.39 -0.33

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->h2

-12.43 5.08 2.04 8.19 -7.66 -7.01 2.40 -0.31 3.58 -1.19

b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3 i7->h3 i8->h3 i9->h3

-19.79 -6.65 1.49 -4.53 -3.95 2.28 6.06 5.19 10.06 -0.20

b->o h1->o h2->o h3->o i1->o i2->o i3->o i4->o i5->o i6->o

2.50 -1.81 0.68 0.71 0.11 -0.09 -0.49 0.72 0.01 -0.03

i7->o i8->o i9->o

0.03 -0.29 -0.15

without linear model component: skip=FALSE
set.seed(22)
> fit1 <- nnet(log.O3 ~ . , data= sc.ozone, size = 3, skip=FALSE,
+ decay = 4e-4, linout = TRUE, maxit = 500)
..........

final value 42.909

converged

> sum(residuals(fit1)^2) # 41.865
> summary(fit1)
a 9-3-1 network with 34 weights

options were - linear output units decay=4e-04

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1

-27.22 8.91 0.51 8.78 -8.26 10.55 -8.46 11.89 -11.51 8.51

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->h2

0.09 -0.15 -0.07 0.07 1.49 -0.43 0.05 -0.41 -0.01 -0.24

b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3 i7->h3 i8->h3 i9->h3

-16.97 6.53 0.56 2.30 -20.19 0.64 6.34 17.51 -1.67 -3.21

b->o h1->o h2->o h3->o

0.86 0.46 2.42 0.86

linout=TRUE indicates that the function is fitted on the linear regression scale; for classifi-
cation, we use the default linout=FALSE. size = 3 chooses 3 hidden units, regularized by
weight decay = 4e-4: these are tuning parameters, and skip=TRUE enforces a neural net
with a linear model component. The random seed is stored because, by default, nnet()
uses random starting values for the high-dimensional optimization.

7.5 Projection pursuit regression

Projection pursuit regression (for regression problems) bears some similarities to feed-
forward neural networks. Instead of taking a linear combination of q different sigmoid
function outputs (from the q hidden units in the hidden layer) in (7.2), we use the follow-

68 Flexible regression and classification methods

ing model:

gPPR(x) = µ +
q∑

k=1

fk(
p∑

j=1

αjkxj), where

∑p

j=1
α2

jk = 1, E[fk(
p∑

j=1

αjkXj)] = 0, for all k.

The functions fk(·) : R → R are nonparametric (i.e. “arbitrary” smooth); the linear
combinations

∑p
j=1 αjkxj are linear projections: For the unit vector αk = (α1k, . . . , αpk)ᵀ,

αk
ᵀx is the projection of x onto (a ray through ~0 in direction) αk. Note that the function

x 7→ fk(
∑p

j=1 αjkxj) only varies along the direction αk, hence the fk’s are called ridge
functions and the model “projection pursuit”. This model typically requires much smaller
q than the hidden units in a neural network, at the expense of estimating ridge functions
rather than using fixed sigmoid functions in neural nets.

Estimation of projection pursuit can be done using a backfitting algorithm. Quite
often, projection pursuit yields very competitive prediction performance when choosing a
reasonable number of ridge functions (e.g. by optimizing a CV score).

7.5.1 Projection pursuit regression in R

The function ppr in R can be used for fitting projection pursuit regression. The function
in ppr re-scales the projection pursuit model to

gPPR(x) = µ +
q∑

k=1

βkfk(
p∑

j=1

αjkxj),

p∑
j=1

α2
jk = 1, E[fk(

p∑
j=1

αjkXj)] = 0, Var(fk(
p∑

j=1

αjkXj)) = 1, for all k.

Consider the ozone data set from above.

fit <- ppr(log(O3) ~ . , data = d.ozone, nterms=4)
nterms specifies the number of ridge functions

sfsmisc::mult.fig(4) # or just par(mfrow=c(2,2))
plot(fit) ## 4 terms -> 4 plots

predict(fit,xnew) # where ’xnew’ is a new set of predictor variables

The estimated ridge functions are shown in Figure 7.6.

7.6 Classification and Regression Trees (CART)

Quite different from the previous methods are the so-called tree models. CART is the
most well known tree model or algorithm in the statistics community.

The underlying model function for CART is

gtree(x) =
R∑

r=1

βr1[x∈Rr],

where P = {R1, . . . ,RR} is a partition of Rp. Thus, the function g(·) is modelled as
piecewise constant.

7.6 Classification and Regression Trees (CART) 69

10 20 30 40 50 60 70 80 90 100

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

term 1
225 230 235 240 245 250 255 260 265 270 275

−9
−8

−7
−6

−5
−4

−3
−2

−1
0

term 2

−650 −630 −610 −590 −570 −550 −530

−6
−5

−4
−3

−2
−1

0
1

2

term 3
190 200 210 220 230 240 250

−6
−5

−4
−3

−2
−1

0
1

2
term 4

Figure 7.6: Four estimated ridge functions fk(·) from a projection pursuit fit to the ozone
data (log(O3) ~ .).

7.6.1 Tree structured estimation and tree representation

Parameter estimation β̂1, . . . , β̂R is easy when the partition P = {R1, . . . ,RR} would be
given. We use

β̂r =
n∑

i=1

Yi1[xi∈Rr]/
n∑

i=1

1[xi∈Rr]

for regression and binary classification (we do not model g(·) on the logistic scale). (For
J class problems with J > 2, we can also use the tree model directly and do not need to
go with a one against the rest approach, see section 6.4.2).

The tricky issue is to get a data-driven estimate for the partition P. Some restrictions
will be made to obtain a computationally feasible algorithm. This will be discussed next.

7.6.2 Tree-structured search algorithm and tree interpretation

We restrict the search for a good partition to partition cells R which are axes parallel
rectangles. Moreover, we proceed in a greedy way since the space of partitions consisting
of axes parallel rectangles is still huge.

A tree-structured greedy algorithm then proceeds as follows.

1. Start with R = 1 subset, P = {R} = Rp.

2. Refine R into Rleft ∪Rright where:

Rleft = R× R× . . .× (−∞, d]× R . . .× R,

Rright = R× R× . . .× (d,∞)× R . . .× R,

where one of the axes is split at the split point d, where d is from the finite set of mid-
points between observed values. The search for the axes to split and the split point
d are determined such that the negative log-likelihood is maximally reduced with

70 Flexible regression and classification methods

the refinement (search over j ∈ {1, . . . , p} and d ∈ {mid-points of observed values}).
Build the new partition P = {R1,R2} with R1 = Rleft, R2 = Rright.

3. Refine the current partition P as in step 2 by refining one of the partition cells from
the current partition P. That is, we search for the best partition cell to refine which
includes a search as in step 2 for the best axes to split and the best split point.
Then, we up-date the partition:

P = Pold \ partition cell selected to be refined ∪ {refinement cells Rleft,Rright}.

4. Iterate step 3 for a large number of partition cells.

5. Backward deletion: prune the tree (see below) until a reasonable model size, typically
determined via cross-validation, is achieved.

Tree representation

The search algorithm above has a useful tree representation. Figures 7.7 and 7.8 show for
part of the kyphosis dataset (2 class problem but now only with two predictor variables
instead of 3) how R2 is recursively partitioned in a tree-structured way. As a side result,
we obtain a very useful interpretation of the model in terms of a tree! Such a decision tree

Figure 7.7: Classification tree for part of the kyphosis data set. “a” and “b” denote the
frequencies of “presence” and “absence” of kyphosis in each node, and the probability
estimate for kyphosis in a node is the a/(a + b).

7.6 Classification and Regression Trees (CART) 71

Figure 7.8: Partition of R2 for part of the kyphosis data set. “p” denotes presence of
kyphosis, “-” denotes absence. Majority voting in each rectangle then determines the
classification rule.

corresponds to a recursive partitioning scheme as shown in Figure 7.8.
The process of backward deletion in step 5 can now be more easily understood. Steps

1–4 result in a large tree TM (M = R − 1). Backward elimination, or tree pruning, then
deletes successively the terminal node in the tree which increases the negative log-likelihood
the least. This will produce a sequence of trees

TM ⊃ TM−1 ⊃ . . . ⊃ T1 = {R0}, R0 = root tree = Rp,

and we can select the “best” tree via crossvalidation as follows: As in regression, where we
had a Cp criterion, the set of nested trees is here produced via so called “cost complexity
pruning” (=: cp). The relevant measure is a penalized goodness of fit,

Rα(T) := R(T) + α× size(T), (7.4)

where the size of a tree is the number of its leaves, or also 1+ the number of “cuts”
and R(.) is a quality of fit measure such as the deviance (sum of squares in the case of
regression) or misclassification rate.

Now pruning is done such that for (conceptually) each α an optimally (wrt Rα(·))
pruned tree is chosen. For model selection, i.e., determining the amount of pruning, we
now only need to choose the best α (or its normalization, cp = α/R(T∅) in rpart()). For
this, k-fold crossvalidation (k = 10 by default) is applied to compute CV error rates (in
the case of classification) for each α. Instead of directly using the minimal error rate to
choose α, the “1 S.E. rule” is used (see fig. 7.9): One takes the smallest tree (most sparse
model) such that its error is at most one standard error larger than minimal one.

72 Flexible regression and classification methods

cp

X−
va

l R
el

at
ive

 E
rro

r
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0
1.

1
1.

2

Inf 0.16 0.066 0.042 0.029 0.021 0.015 0.012 0.0098 0

1 2 3 5 6 10 18 23 26 40

size of tree

Figure 7.9: plotcp(.) for the Kyphosis example shows the full leave-1-out crossvalidated
error rates of rpart()-models as function of α or cp, respectively. A tree with five leaves
(final nodes) seems therefore optimal.

7.6.3 Pros and cons of trees

One of the very nice properties of trees is their interpretation. Displaying information
in terms of a tree structure is extremely useful and very popular in very many scientific
fields. From the view of trees it also becomes clear that trees with depth ` may include
interaction terms of degree ` between different predictor variables. Regarding performance,
classification trees often yield quite good prediction results.
Also note that there is a nice approach for dealing with missing values via so called
“surrogate splits” which allow to predict also when some predictor variable values are not
known. Finally, it may be worthwhile to point out that tree models/algorithms are doing
variable selection automatically.

The disadvantages of trees include the following. The regression function estimate, or
probability estimate in classification, is piecewise constant: this is not usually the form one
thinks of an underlying “true” function. This also implies that the prediction accuracy
for regression curve estimation (or probability estimation in classification) is often not
among the best. Finally, the greedy tree-type algorithm produces fairly unstable splits: in
particular, if one of the first splits is “wrong”, everything below this split (in terms of the
tree) will be “wrong”. Thus, interpretation of a tree – despite its attractiveness – should
be done with caution.

In recent years, trees have also been used as building blocks of much more flexible (and
computationally expensive) fitting methodologies, such as boosting, see chapter 8, or in
“random forests”. There, many trees are fit to the data and their variable selection and
predictions combined into a final model.

7.6.4 CART in R

The function rpart from the package rpart in R can be used for fitting classification or
regression trees.
As an example, we run a regression tree for the ozone data set and display the tree in
Figure 7.10.

> fit <- rpart(log(O3) ~ . , data= d.ozone, method = "anova")

7.6 Classification and Regression Trees (CART) 73

method = ‘‘anova’’ specifies a regression tree

> fit
n= 330

node), split, n, deviance, yval

* denotes terminal node

1) root 330 184.251800 2.2129670

2) temp< 65.5 198 67.348040 1.7804120

4) ibht>=3669 100 25.313780 1.4871350

8) temp< 57.5 78 16.626380 1.3713510

16) humidity>=70 16 4.480741 0.9331287 *

17) humidity< 70 62 8.280081 1.4844410 *

9) temp>=57.5 22 3.934431 1.8976390 *

5) ibht< 3669 98 24.656390 2.0796750

10) day>=332 13 1.852759 1.3895210 *

11) day< 332 85 15.664550 2.1852280

22) day< 47.5 24 3.217857 1.7721080 *

23) day>=47.5 61 6.739110 2.3477670 *

3) temp>=65.5 132 24.287510 2.8617990

6) vsty>=145 18 3.854144 2.2880300 *

7) vsty< 145 114 13.571930 2.9523940

14) ibtp< 226.5 57 4.525832 2.7703180 *

15) ibtp>=226.5 57 5.266831 3.1344690 *

> library(maptree) ; draw.tree(fit) ## is slightly better than simply
plot(fit) ; text(fit, use.n = TRUE) ## for plotting the tree

temp <> 65.5

ibht >< 3669

temp <> 57.5

humidity >< 70

0.9331287
16 obs

1

1.484441
62 obs

2

1.8976395
22 obs

3

day >< 332

1.3895213
13 obs

4 day <> 47.5

1.7721083
24 obs

5

2.3477669
61 obs

6

vsty >< 145

2.2880304
18 obs

7 ibtp <> 226.5

2.7703184
57 obs

8

3.1344692
57 obs

9

Figure 7.10: Regression tree for the ozone data set.

74 Flexible regression and classification methods

7.7 Variable Selection, Regularization, Ridging and the Lasso

7.7.1 Introduction

The following considerations and methods apply to both classification and regression in
principle. For several reasons however we will focus on regression in this whole section.

In problems with many potential regressor or explanatory variables which may partly
be highly correlated with each other, the classical least-squares regression approach can
suffer from the fact that estimated regression coefficients can become quite ill-determined,
i.e. have a high variance even when the fitted regression surface may be well determined.
Also, in chapter 1’s model equation (1.2) Yi = xi

ᵀβ + εi, (i = 1, . . . , n), equivalently

Y = Xβ + ε, (7.5)

where β,xi ∈ Rp, and X is the n×p matrix of rows x1,x2,. . . ,xn (or columns x(1),. . . ,x(p)),
we had assumed that the number of observations n was larger than the number of param-
eters p, i.e., n > p, in order e.g, for the matrix XᵀX to be of full rank p.

One main motivation this topic is the advent of data where there are many more
potential explanatory variables than observations, in short, where p� n . Today the
most important class of such applications is the analysis of genomic data, where e.g., for
so called microarrays, one gets gene expression levels for thousands of genes (p = 1000–
50’000) for typically a few dozen cells (n = 20–100). The target variable Y here is often
binary (e.g., “normal” vs “special”) which means a classification problem with J = 2
classes; we assume here however that treating it as a regression problem (e.g., using least
squares or L2 error) is useful.

7.7.2 Ridge Regression

Let’s consider the regression model (7.5), or

Yi = β0 + β1xi,1 + . . . + βpxi,p + εi, i = 1, . . . , n.

For least squares, one can see that β̂′0 = Y (= 1/n
∑n

i=1 Yi) when the model is re-written
as

Yi = β′0 + β1(xi,1 − x.,1) + . . . + βp(xi,p − x.,p) + εi.

Hence, in all of the following, we will assume that all the variables (Y., and x.,j =: x(j))
have been centered, i.e., mean subtracted, such that no intercept is needed, and we use
the equivalent model for the transformed variables,

Yi = β1xi,1 + . . . + βpxi,p + εi, i = 1, . . . , n. (7.6)

Note that in order have βj on a comparable scale, one also typically scales the x(j)’s such
that

∥∥x(j)
∥∥ = 1 for all j .

Let’s now assume that the variables (column vectors) x(j) = (xi,j)n
i=1 and x(k) are

highly correlated (positively or negatively), or equivalently, since they both have mean 0,
x(k) ≈ cx(j) (for c 6= 0) or x(j) ≈ 1/cx(k). As a consequence, in the following part of the
model,

βjx(j) + βkx(k) ≈ βjx(j) + βk (cx(j))

= (βj + βkc)x(j)

≈ (βk + βj/c)x(k)

7.7 Variable Selection, Regularization, Ridging and the Lasso 75

the coefficients of x(j) and x(k) are not well determined individually, but their model part
(βjx(j) + βkx(k)) still is. Geometrically, in the βj-βk-plane the high confidence region
forms narrow ellipses, i.e., the β components themselves are linearly related, or that the
coefficients of β̂j and β̂k themselves highly correlated but not be well determined individ-
ually, i.e., have a large variance. In the extreme case of “perfect” correlation, the matrix
X would have columns j and k collinear and hence only have rank ≤ p − 1. When the
correlation is less extreme, X is still of full rank p and XᵀX is close to a singular matrix.2

One approach to this problem is to regularize it by improving the condition of the matrix
corresponding to XᵀX.

To give a numerical example, say x(2) ≈ −2x(1), then 1x(1) is close to 3x(1) + x(2)

and hence to 5x(1) + 2x(2) or 51x(1) + 25x(2). One way to make the linear combination
more clearly determined is to restrict the coefficients to small (absolute) values, or, more
conveniently requiring that

∑
j β2

j be “small”. This leads to the so called ridge regression

β̃(s) = arg min
‖β‖2≤s

‖Y −Xβ‖2 ,

which can be shown (by way of a Lagrange multiplier) to be equivalent to

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ ‖β‖2}, (7.7)

where there is a one-to-one relationship between λ and the bound s above, and the limit
λ→ 0 corresponds to s = max ‖β‖2 →∞, namely the ordinary least squares of chapter 1.
As there, by setting derivatives ∂/∂β to zero, this minimization problem is equivalent to
the “normal equations”

(XᵀX + λI)β̂
∗

= XᵀY, (7.8)

where the p× p matrix (XᵀX + λI) will be non-singular (and “well-conditioned”) as soon
as λ > 0 is large enough, even when n < p and XᵀX is clearly singular.

The ridge penalty entails that β̂j(λ) → 0 (“shrinking”) when λ → ∞, and also, in
general, β̂j → β̂j′ (“shrinking together”) for two different coefficients.

Therefore, it’s intuitive that β̂
∗
will have some bias (E[β̂

∗
] 6= β), but that its variance(s)

can be considerably smaller than β̂
LS

such that mean squared errors are smaller. As for
smoothing (in particular, spline smoothing, sect. 3.4) we have a regularization parameter λ
which determines the trade-off between bias and variance, and as there, we’d use something
like cross validation to determine an approximately optimal value for λ.

In the literature (and the R function lm.ridge() from the package MASS) there are
“cheaper” approaches like GCV (see ch. 4) for determining an approximately optimal λ.
In practice, one often wants to look at the ridge traces, i.e., a plot of the coefficients β̂j(λ)
vs λ. As an example we consider the longley macroeconomical data, for once modelling
y = GNP.deflator as function of the other six variables. The ridge traces β̂j(λ) are shown
in Figure 7.11. We have used a “relevant” interval for λ where the shrinking towards zero
is visible (but still somewhat distant from the limit).

7.7.3 The Lasso

In some sense, the “Lasso” (Tibshirani, 1996) regression is just a simple variant of ridge
regression. However with the goal of variable selection in mind, the lasso brings a major
improvement:

2such that Cov(bβ) = σ2(XᵀX)−1 (section 1.4.1) will have very large entries corresponding to the high
variance (and correlation) of β̂j and β̂k.

76 Flexible regression and classification methods

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

−1
0

−5
0

5
10

15
20

25

Ridge traces for Longley data

λ

β j

Population

Armed.ForcesUnemployed
Employed
Year

GNP

Figure 7.11: Ridge traces for the six coefficients βj(λ) (j = 1, . . . , 6) for the Longley data.
The vertical lines indicate traditional estimates of the optimal ridge parameter λ.

The lasso can be defined by restricting the absolute instead of the squared values of
the coefficients, i.e.,

β̃(s) = arg minP
j |βj |≤s

‖Y −Xβ‖2 ,

or

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ

p∑
j=1

|βj |},

= arg min
β

{‖Y −Xβ‖2 + λ‖β‖1}. (7.9)

As opposed to the ridge regression case above, this problem is not solvable by simple
linear algebra but rather needs quadratic programming or related algorithms.

On the other hand, the solution is much more interesting, because it will be frequent
that β̂j will become exactly 0 as soon as λ > λj , in other words, choosing λ here, au-
tomatically means model selection, namely only choosing regressor variables x(j) with
βj 6= 0.

This can be visualized considering the “lasso traces”.

