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the coefficients of x(j) and x(k) are not well determined individually, but their model part
(βjx(j) + βkx(k)) still is. Geometrically, in the βj-βk-plane the high confidence region
forms narrow ellipses, i.e., the β components themselves are linearly related, or that the
coefficients of β̂j and β̂k themselves highly correlated but not be well determined individ-
ually, i.e., have a large variance. In the extreme case of “perfect” correlation, the matrix
X would have columns j and k collinear and hence only have rank ≤ p − 1. When the
correlation is less extreme, X is still of full rank p and XᵀX is close to a singular matrix.2

One approach to this problem is to regularize it by improving the condition of the matrix
corresponding to XᵀX.

To give a numerical example, say x(2) ≈ −2x(1), then 1x(1) is close to 3x(1) + x(2)

and hence to 5x(1) + 2x(2) or 51x(1) + 25x(2). One way to make the linear combination
more clearly determined is to restrict the coefficients to small (absolute) values, or, more
conveniently requiring that

∑
j β2

j be “small”. This leads to the so called ridge regression

β̃(s) = arg min
‖β‖2≤s

‖Y −Xβ‖2 ,

which can be shown (by way of a Lagrange multiplier) to be equivalent to

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ ‖β‖2}, (7.7)

where there is a one-to-one relationship between λ and the bound s above, and the limit
λ→ 0 corresponds to s = max ‖β‖2 →∞, namely the ordinary least squares of chapter 1.
As there, by setting derivatives ∂/∂β to zero, this minimization problem is equivalent to
the “normal equations”

(XᵀX + λI)β̂
∗

= XᵀY, (7.8)

where the p× p matrix (XᵀX + λI) will be non-singular (and “well-conditioned”) as soon
as λ > 0 is large enough, even when n < p and XᵀX is clearly singular.

The ridge penalty entails that β̂j(λ) → 0 (“shrinking”) when λ → ∞, and also, in
general, β̂j → β̂j′ (“shrinking together”) for two different coefficients.

Therefore, it’s intuitive that β̂
∗
will have some bias (E[β̂

∗
] 6= β), but that its variance(s)

can be considerably smaller than β̂
LS

such that mean squared errors are smaller. As for
smoothing (in particular, spline smoothing, sect. 3.4) we have a regularization parameter λ
which determines the trade-off between bias and variance, and as there, we’d use something
like cross validation to determine an approximately optimal value for λ.

In the literature (and the R function lm.ridge() from the package MASS) there are
“cheaper” approaches like GCV (see ch. 4) for determining an approximately optimal λ.
In practice, one often wants to look at the ridge traces, i.e., a plot of the coefficients β̂j(λ)
vs λ. As an example we consider the longley macroeconomical data, for once modelling
y = GNP.deflator as function of the other six variables. The ridge traces β̂j(λ) are shown
in Figure 7.11. We have used a “relevant” interval for λ where the shrinking towards zero
is visible (but still somewhat distant from the limit).

7.7.3 The Lasso

In some sense, the “Lasso” (Tibshirani, 1996) regression is just a simple variant of ridge
regression. However with the goal of variable selection in mind, the lasso brings a major
improvement:

2such that Cov( bβ) = σ2(XᵀX)−1 (section 1.4.1) will have very large entries corresponding to the high
variance (and correlation) of β̂j and β̂k.
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Figure 7.11: Ridge traces for the six coefficients βj(λ) (j = 1, . . . , 6) for the Longley data.
The vertical lines indicate traditional estimates of the optimal ridge parameter λ.

The lasso can be defined by restricting the absolute instead of the squared values of
the coefficients, i.e.,

β̃(s) = arg minP
j |βj |≤s

‖Y −Xβ‖2 ,

or

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ

p∑
j=1

|βj |},

= arg min
β

{‖Y −Xβ‖2 + λ‖β‖1}. (7.9)

As opposed to the ridge regression case above, this problem is not solvable by simple
linear algebra but rather needs quadratic programming or related algorithms.

On the other hand, the solution is much more interesting, because it will be frequent
that β̂j will become exactly 0 as soon as λ > λj , in other words, choosing λ here, au-
tomatically means model selection, namely only choosing regressor variables x(j) with
βj 6= 0.

This can be visualized considering the “lasso traces”.


