
Chapter 6

Classification

6.1 Introduction

Often encountered in applications is the situation where the response variable Y takes
values in a finite set of labels. For example, the response Y could encode the information
whether a patient has disease type A, B or C; or it could describe whether a customer
responds positively about a marketing campaign.
We always encode such information about classes or labels by the numbers 0, 1, . . . , J − 1.
Thus, Y ∈ {0, . . . , J − 1}, without any ordering among these numbers 0, 1, . . . , J − 1. In
other words, our sample space consists of J different groups (“sub-populations”) and our
goal is to classify the observations using the (p-dimensional) explanatory variables.
Given data which are realizations from

(X1, Y1), . . . , (Xn, Yn) i.i.d. ,

the goal is often to assign the probabilities

πj(x) = P[Y = j | X = x] (j = 0, 1, . . . , J − 1),

which is similar to the regression function m(x) = E[Y | X = x] in regression. The
multivariate function πj(·) then also allows to predict the class Ynew at a new observed
predictor Xnew.

6.2 The Bayes classifier

A classifier C : Rp → {0, . . . , J − 1} is a function which assigns to a predictor X ∈ Rp a
class or label which is a prediction for the corresponding Y . The quality of a classifier is
often measured by the expected zero-one test set error:

P[C(Xnew) 6= Ynew].

In case where C = Ĉ is estimated from training data, we consider the generalization error

Ptrain,(Xnew,Ynew)[Ĉ(Xnew) 6= Ynew].

The optimal classifier with respect to the zero-one error is the Bayes classifier, defined
“pointwise”, i.e., for each x individually, as

CBayes(x) = arg max
0≤j≤J−1

πj(x). (6.1)
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Its corresponding expected zero-one test set error is called the Bayes risk

P[CBayes(Xnew) 6= Ynew].

In practice, we do not know πj(·) (and hence the Bayes classifier or risk are as unknown
as MSE or bias in regression). Various methods and models are then used to come up
with multivariate function estimates, either parametric or nonparametric, to obtain π̂j(·).
With this, we can then estimate a classifier by plugging into the Bayes classifier

Ĉ(x) = arg max
0≤j≤J−1

π̂j(x). (6.2)

Such estimated classifiers are widely used, by using various models for πj(·). However,
there are also direct ways to come up with estimated classifiers without trying to estimate
the conditional probability function πj(·): an important class of examples are the support
vector machines (which we will not discuss in this course). Another is the discriminant
analysis view:

6.3 The view of discriminant analysis

6.3.1 Linear discriminant analysis

For the so-called linear discriminant analysis, we assume the following model:

(X | Y = j) ∼ N p(µj , |Σ),

P [Y = j] = pj ,
J−1∑
j=0

pj = 1; j = 0, 1, . . . , J − 1. (6.3)

The conditional distribution of Y | X can then be computed by the Bayes formula

P[Y = j | X = x] = πj(x) =
fX|Y =j(x)pj∑J−1

k=0 fX|Y =k(x)pk

, (6.4)

where fX|Y =j(·) denotes the density of the p-dimensional Gaussian distribution N p(µj , |Σ).
We can interpret this conditional distribution as the a-posteriori distribution of Y given
X by using the a-priori distribution pj for Y .

The unknown parameters in (6.4) are µj and |Σ (or |Σj if the covariances may differ
per group, see 6.3.2) which can be estimated by standard moment estimators:

µ̂j =
n∑

i=1

Xi1[Yi=j]/

n∑
i=1

1[Yi=j] =
1
nj

∑
i;Yi=j

Xi, where nj = #{i;Yi = j},

|̂Σ =
1

n− J

J−1∑
j=0

n∑
i=1

(Xi − µ̂j)(Xi − µ̂j)ᵀ1[Yi=j], and

|̂Σj =
1

nj − 1

n∑
i=1

(Xi − µ̂j)(Xi − µ̂j)ᵀ1[Yi=j] (6.5)

Moreover, we need to specify the (a-priori) distribution for Y : quite often, one takes
p̂j = n−1

∑n
i=1 1[Yi=j] = nj/n. Using these parameter estimates, we obtain a classifier via
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formula (6.4) and (6.2):

Ĉlin.discr.(x) = arg max
0≤j≤J−1

δ̂j(x),

δ̂j(x) = xᵀ |̂Σ
−1

µ̂j − µ̂j
ᵀ |̂Σ

−1
µ̂j/2 + log(p̂j) =

= (x− µ̂j/2)ᵀ |̂Σ
−1

µ̂j + log(p̂j).

This classifier is called “linear discriminant classifier” because the estimated decision func-
tions δ̂j(·) are linear in the predictor variables x and since the regions are determined
by δ̂j(x) − δ̂j′(x) ≥ 0, the decision boundaries are hyperplanes (i.e., lines for p = 2),

xᵀ |̂Σ
−1

(µ̂j − µ̂j′) + cj,j′ = 0.

6.3.2 Quadratic discriminant analysis

The model underlying linear discriminant analysis assumes equal covariances for all the
groups, see formula (6.3). More generally, we sometimes assume

(X | Y = j) ∼ N p(µj , |Σj),

P [Y = j] = pj ,
J−1∑
j=0

pj = 1; j = 0, 1, . . . , J − 1.

with non-equal covariances for all the groups j ∈ {0, 1, . . . , J − 1}. Analogously to linear
discriminant analysis, we then obtain discriminant functions which are quadratic in the
predictor variables x,

δ̂j(x) = − log(det( |̂Σj))/2− (x− µ̂j)ᵀ |̂Σ
−1

j (x− µ̂j)/2 + log(p̂j).

Such quadratic discriminant classifiers are more flexible and general than their linear
“cousins”: but the price to pay for this flexibility are J · p(p + 1)/2 parameters for all
covariance matrices |Σj (j = 0, 1, . . . , J − 1) instead of p(p + 1)/2 for one |Σ in linear dis-
criminant analysis. Particularly when p is large, quadratic discriminant analysis typically
overfits (too large variability).

6.4 The view of logistic regression

As we have seen in (6.1), all we need to know for a good classifier is a good estimator for
the conditional probabilities πj(·).

6.4.1 Binary classification

For the case with binary response Y ∈ {0, 1}, the conditional probability function

π(x) = P[Y = 1 | X = x]

provides the full information about the conditional distribution of Y given X (since P[Y =
0 | X = x] = 1− π(x)). The logistic model for π(·) in general is

log
(

π(x)
1− π(x)

)
= g(x),

g : Rp → R. (6.6)

Note that the so-called logistic transform π 7→ log(π/(1 − π)) maps the interval (0, 1) to
the real line R. Models for real-valued functions can thus be used for g(·).
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Linear logistic regression

In analogy to linear regression in chapter 1, a popular and simple model for g(·) is

g(x) =
p∑

j=1

βjxj . (6.7)

The model in (6.6) with g(·) from (6.7) is called linear logistic regression.
Fitting of the parameters is usually done by maximum-likelihood. For fixed predictors

xi, the probability structure of the response variables is

Y1, . . . , Yn independent, Yi ∼ Bernoulli(π(xi)).

The likelihood is thus

L(β; (x1, Y1), . . . , (xn, Yn)) =
n∏

i=1

π(xi)Yi(1− π(xi))1−Yi ,

and the negative log-likelihood becomes

−`(β; (x1, Y1), . . . , (xn, Yn)) = −
n∑

i=1

(Yi log(π(xi)) + (1− Yi) log(1− π(xi)))

= −
n∑

i=1

(
Yi

p∑
j=1

βjxij − log(exp(
p∑

j=1

βjxij) + 1)
)

.

Minimization of the negative log-likelihood is a nonlinear problem. It is usually solved
numerically by versions of Newton’s gradient descent method which then yield the maximal
likelihood estimate β̂p×1.

Asymptotic inference and an example

Survival
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Figure 6.1: Survival of 247 prenatal babies as a function of age (in weeks), weight (in grams) and
3 other clinical variables.
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Based on classical theory for maximum likelihood estimation, the distribution of the
estimated coefficients β̂ can be derived from an asymptotic point of view where the sample
size n→∞. The output in R then yields a summary of the estimated coefficients, of their
estimated standard errors ŝ.e.(β̂j), of the individual t-test statistics β̂j/ŝ.e.(β̂j) (which are
asymptotically N (0, 1) distributed under the null-hypothesis H0,j : βj = 0) and the P-
values for the individual t-tests for the null-hypotheses H0,j = 0 (j = 1, . . . , p).

As an example, we consider a dataset about survival of prenatal babies (represented
by the response variable Y ∈ {0, 1}) as a function of age (in weeks), weight (in grams)
and 3 other clinical variables (see Fig. 6.1). Fitting a linear logistic regression model can
be done in R using the function glm:

> d.baby ← read.table("http://stat.ethz.ch/Teaching/Datasets/baby.dat",header=T)

> fit ← glm(Survival ~ ., data = d.baby, family= "binomial")
> summary(fit)

Call:

glm(formula = Survival ~ ., family = "binomial", data = d.baby)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3994 -0.7393 0.4220 0.7833 1.9445

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0933685 14.3053767 -0.216 0.8288

Weight 0.0037341 0.0008468 4.410 1.03e-05 ***

Age 0.1588001 0.0761061 2.087 0.0369 *

X1.Apgar 0.1159864 0.1108339 1.046 0.2953

X5.Apgar 0.0611499 0.1202222 0.509 0.6110

pH -0.7380214 1.8964578 -0.389 0.6972

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 319.28 on 246 degrees of freedom

Residual deviance: 236.14 on 241 degrees of freedom

AIC: 248.14

Number of Fisher Scoring iterations: 4

As seen from the P -values for the individual hypotheses H0,j : βj = 0, the predictor
variables weight and age, which are strongly correlated, turn out to be significant for
describing whether a prenatal baby will survive.
For classification, we can extract the probabilities with the function predict:

predict(fit, type="response")
which yields the estimated probabilities π̂(xi), i = 1, . . . , n. Thus, the average in-sample
classification accuracy 1

n

∑n
i=1 1

[Yi= bC(xi)]
is given by

mean((predict(fit, type = "response") > 0.5) == d.baby$Survival) ,
which turns out to be 0.789. Remember that such an in-sample estimate is over-optimistic
for measuring the true generalization performance.
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Linear logistic regression or LDA?

In linear logistic regression, the model for the log-odds (the logit-transform)

log
(

π(x)
1− π(x)

)
=

p∑
j=1

βjxj

is linear in the predictors. But also the log-odds from LDA in model (6.4) yield a linear
model in the predictor variables which is a consequence of the Gaussian assumption. Thus,
the two methods are quite similar. In our example, the ldacoefficients of the five predictors
are 0.00309, 0.124, 0.0685, 0.067, -0.763, and the in-sample accuracy is slightly smaller, at
0.785.

The linear logistic regression does not make any assumptions on the predictor variables
such a multivariate Gaussianity; but the restriction comes in by requiring a linear log-
odds function. Logistic regression can also be used when having factor variables (e.g.
x ∈ {0, 1, . . . ,K}) as predictors.

While LDA does make a Gaussian assumption for the predictors, it can also be used as
a “linear technique” in case of non-Gaussian predictors (even with factors). Empirically,
LDA and linear logistic regression yield similar answers, even for non-Gaussian predictors,
with respect to classification accuracy.

6.4.2 Multiclass case, J > 2

Logistic regression cannot be directly applied to the multiclass case with Y ∈ {0, 1, . . . J−
1} and J > 2. But we can always encode a multiclass problem with J classes as J binary
class problems by using

Y
(j)
i =

{ 1 if Yi = j,
0 otherwise.

This means that we consider class j against all remaining classes.
We can then run (linear or “general”) logistic regressions

log
(

πj(x)
1− πj(x)

)
= gj(x) =

p∑
r=1

β(j)
r xr

yielding estimates

π̂j(x) =
exp(

∑p
r=1 β̂

(j)
r )

1 + exp(
∑p

r=1 β̂
(j)
r )

. (6.8)

The estimates π̂j(·) will not sum up to one: but a normalization will do the job,

π̃j(x) =
π̂j(x)∑J−1

j=0 π̂j(x)
.

Note that for this (parametric, linear) case, the problem can be formulated more nicely, but
slightly differently, using the multinomial distribution, and solved by maximum likelihood,
very similarly to the linear logistic (J = 2) case1. This is implemented in R ’s multinom()
function (standard package nnet).

1The Likelihood is L = πn0
0 πn1

1 · π
nJ−1
J−1 , the log-likelihood therefore l =

PJ−1
j=0 nj log πj , where the

constraint
P

j πj ≡ 1 has to be fulfilled.
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A related approach works with a reference class, say, j = 0, and instead of “one against
all” models “everyone against the reference”,

log (πj(x)/π0(x)) = gj(x), for j = 1, . . . , J − 1.

Other ways are also possible to reduce a J class problem into several binary class
problems. Instead of modelling class j against the rest, we can also model class j against
another class k for all pairs (j, k) with j 6= k. This will require fitting

(
J
2

)
logistic models

(involving
(
J
2

)
· p estimated parameters in the linear case), instead of J models in the one

against the rest approach. We should keep in mind that the models are different: in the
one against the rest approach, the coefficients in (6.8) describe the effect of the predictors
for distinguishing class j from all others, and in a pairwise approach, we would model the
distinction between two classes.

Note that for the particular situation of ordered classes, one can use a more simple
“proportional odds” model

logit(P [Y ≤ k | x]) = αk+g(x), k = 0, 1, . . . , J−1, with α0 ≤ α1 ≤ . . . ≤ αJ−1. (6.9)


