
Chapter 4

Cross-Validation

4.1 Introduction

The generalization performance (which is a terminology from the machine learning com-
munity) of a learning method describes its prediction capacity on new test data. Or in
other words, the generalization performance measures the predictive power of a learning
method on new, out-sample data. Having an estimate of this predictive power is very
important for comparing among different methods or for tuning an estimator or algorithm
to optimize predictive power.

Cross-Validation is one very general method for estimating such generalization or out-
sample performance.

4.2 Training and Test Set

Consider the situation where we have data

(X1, Y1), . . . , (Xn, Yn) i.i.d. ∼ P

where P denotes the unknown distribution. (In case where the xi is non-random, we can
also drop the i.i.d. assumption for the pairs (xi, Yi).)

We typically have a target in mind, for example the regression function m(·). The esti-
mated regression function m̂(·) is then constructed by using some estimator or algorithm,
based on the data (X1, Y1), . . . , (Xn, Yn). This data is also called the training data, since
it is used to train the estimator or learning algorithm.

We then would like to evaluate the accuracy of the estimated target which is based on
the training data. A principal problem thereby is that if we use the training data again
to measure the predictive power of our estimated target (e.g. of m̂(·)), the results will be
overly optimistic. For example, when using the residual sum or squares in regression,

n∑
i=1

(Yi − m̂(Xi))2

becomes smaller the more “complex” (more degrees of freedom) the model for m̂(·) in-
volves. Obviously, a very complex model will not be good. We have seen already in
Section 3.4 that penalizing the residual sum of squares can be useful to cope with the
overfitting problem.

33

34 Cross-Validation

Alternatively, we could look how well the estimated target, e.g. m̂(·), does on new
test data

(Xnew,1, Ynew,1), . . . , (Xnew,`, Ynew,`) i.i.d. ∼ P,

which is assumed to be independent from the training data but having the same distribu-
tion P . In case of regression, we would like to evaluate

`−1
∑̀
i=1

(Ynew,i − m̂(Xnew,i))2.

More generally, when having an estimated target m̂ and a loss function ρ, we would like
to evaluate

`−1
∑̀
i=1

ρ (Ynew,i, m̂(Xnew,i)) ,

where m̂(·) is constructed from training data only. If ` is large, this evaluation on the test
set approximates the theoretical test set error

E(Xnew,Ynew)[ρ(Ynew, m̂︸︷︷︸
based on training data only

(Xnew))]

which is still a function of the training data. The expected value of this (with respect to
the training data) is the generalization error,

EtrainingE(Xnew,Ynew)[ρ(Ynew, m̂︸︷︷︸
...training data

(Xnew))] = E[ρ(Ynew, m̂(Xnew))], (4.1)

where the latter E is over the training data (X1, Y1), . . . , (Xn, Yn) as well as the test data
(Xnew, Ynew). This generalization error avoids the fact that it would get smaller the more
complex the model for m̂(·). In particular, it will increase as m̂ is overfitting. Hence the
generalization error in (4.1) is a very useful quantity to regularize and tune an estimator
or algorithm for m̂.

4.3 Constructing training-, test-data and cross-validation

Unfortunately, test data is not available at the time we want to run and tune our estimator
or algorithm. But we can always “artificially” construct (smaller) training- and test-data.

4.3.1 Leave-one-out cross-validation

For leave-one-out cross-validation (CV), we use the ith sample point as test data (test
sample size = 1) and the remaining n− 1 sample points as training data.

Denote in general the estimator or algorithm by θ̂n which is based on the n sample
points. In CV, when deleting the ith sample, the estimator is based on the sample without
the ith observation, and we denote this by

θ̂
(−i)
n−1, i = 1, . . . , n.

We can then evaluate this estimate on the ith observation (the test sample), for every
i = 1, . . . , n. To make this more explicit, we suppose that the estimator θ̂ is a curve

4.3 Constructing training-, test-data and cross-validation 35

estimator m̂, and performance is evaluated in terms of a loss function ρ, e.g. ρ(u) = u2 as
in Chapter 3. The cross-validated performance is then

n−1
n∑

i=1

ρ
(
Yi, m̂

(−i)
n−1(Xi)

)
(4.2)

which is an estimate of the test set error, or generalization error, in (4.1).
Note that the CV-method is very general: it can be used for any loss function ρ and

in many problems which can be different than linear or nonparametric regression.
CV in general requires that the estimator θ̂ is fitted n-times, namely for all training

sets where the ith observation has been deleted (i = 1, . . . , n).

4.3.2 K-fold Cross-Validation

A computationally cheaper version of leave-one-out CV is the so-called K-fold CV. The
data set is randomly partitioned into K equally sized (as equal as possible) subsets Bk of
{1, . . . , n} such that ∪K

k=1Bk = {1, . . . , n} and Bj ∩ Bk = ∅ (j 6= k). We can now set aside
a kth test data set including all sample points whose indices are elements of Bk.

K-fold cross-validation then uses the sample points with indices not in Bk as training
set to construct an estimator

θ̂
(−Bk)
n−|Bk|.

The analogue of the evaluation formula in (4.2) is then, for regression with m̂(·),

K−1
K∑

k=1

|Bk|−1
∑
i∈Bk

ρ
(
Yi, m̂

−(Bk)
n−|Bk|(Xi)

)
.

K-fold CV thus only needs to run the estimation algorithm K times. Leave-one-out CV
is the same as n-fold CV. In practice, often K = 5 or K = 10 are used.

4.3.3 Random divisions into test- and training-data

K-fold CV has the disadvantage that it depends on the one realized random partition into
subsets B1, . . . ,BK . In particular, if the data (pairs) are assumed to be i.i.d., the indexing
of the data (pairs) should not have an influence on validating a performance: note that
leave-one-out CV is indeed independent of indexing the data.

In principle, we can generalize leave-one-out CV to leave-d-out CV. Leave a set C
comprising d observations out (set them aside as test data) and use the remaining n − d
data points for training the statistical model or algorithm:

θ̂
(−C)
n−d , for all possible subsets Ck, k = 1, 2, . . . ,

(
n
d

)
.

We can then evaluate this estimate on observations from the test set Ci (the test sample),
for every i. The analogue of (4.2), for regression with m̂(·), is then

(
n
d

)−1

“
n
d

”∑
k=1

d−1
∑
i∈Ck

ρ
(
Yi, m̂

(−Ck)
n−d (Xi)

)
(4.3)

which is also an estimate of the test set error, or generalization error in (4.1).

36 Cross-Validation

The computational burden becomes immense if d ≥ 3. A computational short-cut is
then given by randomization: instead of considering all subsets (test sets), we draw B
random test subsets

C∗1 , . . . , C∗B i.i.d. ∼ Uniform({1, . . . ,
(

n
d

)
}),

where the Uniform distribution assigns probability
(

n
d

)−1 to every possible subset of size
d. Such a Uniform distribution, or such a random subset C∗, is easily constructed by
sampling without replacement:

draw d times randomly without replacement from {1, . . . , n}, yielding a subset C∗.

The random approximation for (4.3) is then

B−1
B∑

k=1

d−1
∑
i∈C∗k

ρ
(
Yi, m̂

(−C∗k)

n−d (Xi)
)

. (4.4)

For B =∞, the two expressions in (4.4) and (4.3) coincide (note that we only would need
a finite, maybe huge, amount of computation for evaluation of (4.3)).

In practice, we typically choose d = [γn] with γ ≈ 0.1 (10% test data). For the
number of random test and training sets, we choose B ≈ 50− 500, depending on the cost
to compute θ̂

(−C)
n−d for a training set of size n − d (evaluation on the test set C) is usually

fast). Thus, in terms of computation, the stochastic version in (4.4) may be even faster
than leave-one-out CV in (4.2) if B < n, and we can use the stochastic approximation
also for leave-one-out CV when sample size n is large.

4.4 Properties of different CV-schemes

4.4.1 Leave-one-out CV

Leave-one-out CV, which is equal to n-fold CV, is approximately unbiased for the true
prediction or generalization error: the only drawback in terms of bias is that we use
training sample size n− 1 instead of the original n, causing for a slight bias. The variance
of leave-one-out CV is typically high, because the n training sets are so similar to each
other:

Var

(
n−1

n∑
i=−1

ρ
(
Yi, m̂

(−i)
n−1(Xi)

))
= n−2

n∑
i=1

n∑
j=1

Cov
(
ρ(Yi, m̂

(−i)
n−1(Xi)), ρ(Yj , m̂

(−j)
n−1 (Xj))

)
.

Although (Xi, Yi) is typically assumed to be independent from (Xj , Yj), the covariances
are substantial because of strong correlation of m̂

(−i)
n−1(·) and m̂

(−j)
n−1 (·), and hence the double

sum in the formula above can be quite large.

4.4.2 Leave-d-out CV

Heuristically, it is clear that leave-d-out CV, with d > 1, has higher bias than leave-one-out
CV; because we use training samples of sizes n− d instead of the original n, causing some
bias. In terms of variance, we average over more, although highly correlated summands
in (4.3), which can be shown to decrease variance in comparison to leave-one-out CV.

4.5 Computational shortcut for some linear fitting operators 37

4.4.3 Versions with computational shortcuts

K-fold CV has larger bias than leave-one-out CV; because the training sets are of smaller
sample size than n − 1 (in leave-one-out CV), and also smaller than the original sample
size n. In terms of variance, it is not clear (sometimes wrongly stated in the literature)
whether K-fold CV has smaller variance than leave-one-out CV.

The stochastic approximation is expected to have somewhat higher bias and variance
than the computationally infeasible leave-d-out CV: it is difficult to assess how much we
lose by using a finite B.

4.5 Computational shortcut for some linear fitting opera-
tors

Consider the special case of fitting a cubic smoothing spline or fitting a least squares
parametric estimator: in both cases, we have a linear fitting operator S,

(m̂(x1), . . . , m̂(xn))ᵀ = SY, Y = (Y1, . . . , Yn)ᵀ.

When focusing on the squared error loss function ρ(y, x) = |y − x|2, there is a surprising
result for representing the leave-one-out CV score in (4.2):

n−1
n∑

i=1

(
Yi − m̂

(−i)
n−1(Xi)

)2
= n−1

n∑
i=1

(
Yi − m̂(Xi)

1− Sii

)2

. (4.5)

The interesting property is that we can compute the CV score by fitting the original esti-
mator m̂(·) once on the full dataset, without having to do it n times by holding one
observation back as a test point. Moreover, by using efficient linear algebra implementa-
tions, the elements Sii can be computed with O(n) operations.

Historically, it was computationally more difficult to obtain all diagonal elements from
the hat matrix Sii (i = 1, . . . , n); and computing the trace(S), which equals the sum of
the eigenvalues of S, has been easier. The generalized cross-validation was then proposed
in the late 70’s:

GCV =
n−1

∑n
i=1(Yi − m̂(Xi))2

(1− n−1trace(S))2
.

This again requires to compute m̂(·) only once on the full dataset. Moreover, if all the
diagonal elements Sii would be equal (which is typically not the case), GCV would coincide
with the formula in (4.5). As outlined already, GCV has been motivated by computational
considerations which are nowadays not very relevant anymore. However, the statistical
properties of GCV can also be as good (and sometimes better or worse) than the ones
from leave-one-out CV.

38 Cross-Validation

Chapter 5

Bootstrap

5.1 Introduction

The bootstrap, proposed by Efron (1979), is by now considered as a breakthrough in
statistics. Essentially, the bootstrap can be described as “simulating from an estimated
model”. This turns out to be tremendously useful for making statistical inference (confi-
dence intervals and testing) and, analogous to the goals in cross-validation, for estimating
the predictive power of a model or algorithm and hence also for tuning of statistical pro-
cedures.

5.2 Efron’s nonparametric bootstrap

Consider the situation where the data are realizations of

Z1, . . . , Zn i.i.d. ∼ P,

where P denotes an unknown distribution. The variables Zi can be real-valued (usually
then denoted by Xi), or they can be vector-valued. For example, Zi = (Xi, Yi) are the
pairs in a regression problem with Xi ∈ Rp and Yi ∈ R.

We denote a statistical procedure or estimator by

θ̂n = g(Z1, . . . , Zn) (5.1)

which is a (known) function g of the data Z1, . . . , Zn. The estimator θ̂n can be a parameter
estimator or also a curve estimator (e.g. in nonparametric regression).

Whenever we want to make statistical inference, we would like to know the probability
distribution of θ̂n. For example, constructing a confidence interval for a true parameter θ
requires the knowledge of the distribution of θ̂n; or constructing a statistical test requires
the distribution of θ̂n under the null-hypothesis. We also considered in chapter 4 the
problem of estimating the generalization error in regression

E[(Ynew − m̂(Xnew))2]

which can be thought of as the expected value, a summary statistic of the distribution, of

θ̂n+1 = g(Z1, . . . , Zn, Znew) = (Ynew − m̂Z1,...,Zn(Xnew))2, Zi = (Xi, Yi),

where we have a function g of the training and test data.

39

40 Bootstrap

Deriving the exact distribution of θ̂n is typically impossible, unless the function g is
simple and P is a mathematically convenient distribution, e.g. P is a Normal distribution.
If exact distributions are not available, much mathematical theory has been developed to
get at least the asymptotic distribution of θ̂n as n gets large. For example, due to the
central limit theorem,

θ̂n = n−1
n∑

i=1

Xi ≈ N (µ, σ2/n), Xi ∈ R,

where µ = E[Xi], σ2 = Var(Xi). We then only need to estimate the parameters µ and σ in
order to have an approximate distribution for n−1

∑n
i=1 Xi. For the maximum-likelihood

estimator in general, estimation of the asymptotic variance is already more subtle. Or for
the sample median,

θ̂n = median(X1, . . . , Xn) ≈ N (θ, σ2
asy/n), Xi ∈ R,

σ2
asy = E[(X − θ)2]/(4f2(θ))

where the asymptotic variance already involves quantities like the density f of P at the
unknown parameter θ = median(P). Estimating this asymptotic variance is already a
pretty awkward task, and we should keep in mind that we would then only get the asymp-
totic answer to the problem of getting the distribution of θ̂n. Finally, for more complex
algorithms, mathematical theory is lacking for obtaining the approximate, asymptotic
distribution.

A pioneering step has then be taken by Efron (1979). Suppose we would know what
the distribution P is: we could then simulate to obtain the distribution of any θ̂n with
arbitrary accuracy (when simulating enough). Because we do not know the distribution P
of the data generating mechanism, we use the empirical distribution P̂n which places
probability mass 1/n on every data point Zi, i = 1, . . . , n. The recipe is then to simulate
from P̂n: generate simulated data

Z∗
1 , . . . Z∗

n i.i.d. ∼ P̂n.

Such a simulated new data set is called a bootstrap sample. We can now compute our
estimator θ̂∗n = g(Z∗

1 , . . . , Z∗
n), analogously to (5.1) but based on the bootstrap sample, and

we then repeat this many times to get an approximate distribution, e.g. via the histogram
of many simulated θ̂∗n’s.

5.2.1 The bootstrap algorithm

Bootstrapping an estimator as in (5.1) can be done as follows.

1. Generate a bootstrap sample

Z∗
1 , . . . , Z∗

n i.i.d. ∼ P̂n.

This can be realized as follows. Do n uniform random drawings with replace-
ment from the data set {Z1, . . . , Zn}, yielding the bootstrap sample.

2. Compute the bootstrapped estimator

θ̂∗n = g(Z∗
1 , . . . , Z∗

n),

based on the bootstrap sample; the function g(·) is as in (5.1).

5.2 Efron’s nonparametric bootstrap 41

3. Repeat steps 1 and 2 B times to obtain

θ̂∗1n , . . . , θ̂∗Bn .

4. These B bootstrapped estimators in 3 can then be used as approximations for the
bootstrap expectation, the bootstrap variance and the bootstrap quantiles:

E∗[θ̂∗n] ≈ 1
B

B∑
i=1

θ̂∗in ,

Var∗(θ̂∗n) ≈ 1
B − 1

B∑
i=1

(
θ̂∗in −

1
B

B∑
j=1

θ̂∗jn

)2
,

α-quantile of distribution of θ̂∗n ≈ empirical α-quantile of θ̂∗1n , . . . , θ̂∗Bn .

The definition of the bootstrap values E∗, Var∗ or the bootstrap distribution are discussed
next.

5.2.2 The bootstrap distribution

The bootstrap distribution, denoted here by P ∗, is the conditional probability distribution
which is induced by i.i.d. resampling of the data

Z∗
1 , . . . , Z∗

n i.i.d. ∼ P̂n, (5.2)

given the original data. The fact that we condition on the data allows to treat the
bootstrap resampling distribution P̂n, which is the empirical distribution of the data, as
a fixed distribution.

Therefore, the bootstrap distribution P ∗ of θ̂∗n = g(Z∗
1 , . . . , Z∗

n) is the distribution
which arises when resampling with P̂n in (5.2) and applying the function g on such a
bootstrap sample, exactly as done by simulation in section 5.2.1. (From a theoretical point
of view, the bootstrap distribution P ∗ can be represented by a multinomial distribution
that contains the information which and how many times of the original data appears
again in the bootstrap sample (5.2)).

The bootstrap expectation of θ̂∗n is then denoted by E∗[θ̂∗n] which is a conditional
expectation given the data. Likewise, Var∗(θ̂∗n) is a conditional variance given the data.
Since P̂n in (5.2) is “close” to the true data-generating probability P , the bootstrap values
are “reasonable” estimates for the true quantities. For example, we can use

V̂ar(θ̂n) = Var∗(θ̂∗n).

This estimate is approximately computed as in step 4 of the bootstrap algorithm in sec-
tion 5.2.1. Whether such a bootstrap estimate is consistent will be discussed in the fol-
lowing section.

5.2.3 Bootstrap confidence interval: a first approach

The bootstrap is called to be consistent for θ̂n if, for all x,

P[an(θ̂n − θ) ≤ x] − P∗[an(θ̂∗n − θ̂n) ≤ x] P−→ 0 (n→∞). (5.3)

42 Bootstrap

In classical situations, an =
√

n: for example, the maximum-likelihood estimator θ̂n satis-
fies under regularity assumptions

√
n(θ̂n,MLE − θ) D−→ N (0, I−1(θ)) (n→∞),

where I(θ) denotes the Fisher information at θ. Bootstrap consistency (5.3) then means

√
n(θ̂∗n,MLE − θ̂n) D∗

−→ N (0, I−1(θ)) in probability (n→∞).

Consistency of the bootstrap typically holds
if the limiting distribution of θ̂n is Normal,
and if the data Z1, . . . , Zn are i.i.d.

Consistency of the bootstrap (usually) implies consistent variance and bias estimation:

Var∗(θ̂∗n)

Var(θ̂n)
P−→ 1,

E∗[θ̂∗n]− θ̂n

E[θ̂n]− θ

P−→ 1.

Moreover, consistent confidence intervals can be constructed. A two-sided confidence
interval with coverage 1− α for a parameter θ is given by[

θ̂n − q1−α/2, θ̂n − qα/2

]
, where qα = α-quantile of θ̂n − θ.

This is derived using elementary calculations. In analogy, the bootstrap estimated confi-
dence interval is then defined as[

θ̂n − q̂1−α/2, θ̂n − q̂α/2

]
, (5.4)

where q̂α = α-bootstrap quantile of θ̂∗n − θ̂n.

Due to invariance of the quantile:

q̂α = q∗α − θ̂n, where q∗α = α-bootstrap quantile of θ̂∗n.

Therefore, the bootstrap confidence interval in (5.4) becomes[
2θ̂n − q∗1−α/2, 2θ̂n − q∗α/2

]
. (5.5)

Note that this is not the same as simply taking the quantiles of the bootstrap
distribution, i.e., the simple-minded

[
q∗α/2, q∗1−α/2

]
is “backwards” and often less appro-

priate. The derivation which we gave for this “unintuitive” fact hinges on the consistency
of the bootstrap in (5.3).

Better bootstrap confidence intervals than (5.4) exist and often have better coverage
accuracy — at the price of being somewhat more difficult to implement. See also the
double bootstrap below (section 5.3)

5.2 Efron’s nonparametric bootstrap 43

LOGVISC

Fr
eq

ue
nc

y

−0.8 −0.6 −0.4

0
50

10
0

15
0

20
0

25
0

ASPH

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

20
0

25
0

BASE

Fr
eq

ue
nc

y

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

25
0

RUN

Fr
eq

ue
nc

y

−1.5 −1.0 −0.5 0.0 0.5

0
50

10
0

15
0

20
0

FINES

Fr
eq

ue
nc

y

−0.02 0.00 0.02

0
50

10
0

15
0

20
0

25
0

30
0

VOIDS

Fr
eq

ue
nc

y

−0.2 0.0 0.2 0.4 0.6

0
50

10
0

15
0

20
0

25
0

30
0

Figure 5.1: Histograms of B = 1000 bootstrap values β̂∗j for the 6 coefficients in the linear
model about asphalt quality from section 1.5.1.

An example

We consider here the example about asphalt quality from section 1.5.1, where a linear
model has been used to model the log of rutting as a function of 6 predictor variables.

The bootstrap distributions for the 6 coefficients corresponding to the 6 predictor
variables are exhibited in Figure 5.1.

The standard confidence intervals based on normally distributed data (or on asymp-
totic considerations) are (including an intercept)

β̂j ± tn−p−1;1−α/2 · ŝ.e.(β̂j),

where tn−p−1;α denotes the α-quantile of a tn−p−1 distribution (qt(α,n-p-1)). In this
example, n = 31, p = 6 when using α = 0.05, we get tn−7;1−α/2 = 2.063899. The
confidence intervals are then given in Table 5.2.3.

method intercept LOGVISC ASPH BASE RUN FINES VOIDS
classical [-10.86,-0.71] [-0.66,-0.36] [0.60,1.70] [-0.44,0.91] [-1.23,-0.01] [-0.02,0.02] [0.09,0.54]
bootstrap [-11.97,0.99] [-0.67,-0.36] [0.41,1.78] [-0.37,0.87] [-1.26,0.09] [-0.01,0.02] [0.10,0.60]

Table 5.1: Classical 95% confidence intervals and 95% bootstrap confidence intervals (using
B = 1000) from (5.4) for the 7 coefficients in a linear model for the asphalt dataset from
section 1.5.1. In bold are the bootstrap confidence intervals which suggest non-significance
while the classical confidence intervals (or t-tests) would suggest significance.

44 Bootstrap

5.2.4 Bootstrap estimate of the generalization error

Consider the problem of estimating the generalization error

E[ρ(Ynew, m̂(Xnew))]

in (4.1), where ρ is a loss function such as ρ(y, m) = |y−m|2 and m̂(·) could be a regression
estimator.

The bootstrap approach to estimate the generalization error is from a conceptual view
as follows.

1. Generate (X∗
1 , Y ∗

1), . . . , (X∗
n, Y ∗

n), (X∗
new, Y ∗

new) i.i.d. ∼ P̂n,

where P̂n is the empirical distribution of the original data (X1, Y1), . . . , (Xn, Yn).

2. Compute the bootstrapped estimator m̂∗(·) based on (X∗
1 , Y ∗

1), . . . , (X∗
n, Y ∗

n).

3. Compute the bootstrap generalization error

E∗[ρ(Y ∗
new, m̂∗(X∗

new))],

where E∗ is with respect to all the bootstrap variables train∗ = (X∗
1 , Y ∗

1), . . . , (X∗
n, Y ∗

n)
and test∗ = (X∗

new, Y ∗
new). Use this as an estimate of the true generalization error.

The bootstrap generalization error can be re-written as follows:

E∗[ρ(Y ∗
new, m̂∗(X∗

new))] = E∗train∗
[
E∗test∗ [ρ(Y ∗

new, m̂∗(X∗
new)) | train∗]

]
(5.6)

= E∗train∗ [n−1
n∑

i=1

ρ(Yi, m̂
∗(Xi))] = n−1

n∑
i=1

E∗[ρ(Yi, m̂
∗(Xi))].

The first equality on the second line follows because: (i) test∗ = (X∗
new, Y ∗

new) is inde-
pendent (with respect to the bootstrap distribution) from train∗, and hence the inner
conditional expectation is a non-conditional expectation using m̂∗(·) as fixed (non-random
because we condition on the bootstrap training data train∗); (ii) the bootstrap expectation
E∗[g(X∗, Y ∗)] = n−1

∑n
i=1 g(Xi, Yi) for any function g(·).

Therefore, the bootstrap generalization error as represented in (5.6) is the average of
the bootstrap errors over the observed original data (Xi, Yi). In particular, there is no
need to generate (X∗

new, Y ∗
new) as conceptually introduced above in step 1. The practical

algorithm then looks as follows.

1. Generate (X∗
1 , Y ∗

1), . . . , (X∗
n, Y ∗

n) by resampling with replacement from the original
data.

2. Compute the bootstrapped estimator m̂∗(·) based on (X∗
1 , Y ∗

1), . . . , (X∗
n, Y ∗

n).

3. Evaluate err∗ = n−1
∑n

i=1 ρ(Yi, m̂
∗(Xi)).

4. Repeat steps 1–3 B times to obtain err∗1, . . . , err∗B. Approximate the bootstrap
generalization error in (5.6) by

B−1
B∑

i=1

err∗i,

and use it as an estimate for the true generalization error in (4.1).

5.3 Double bootstrap 45

5.3 Double bootstrap

We describe here how the bootstrap can be used twice (or multiple times) aiming to
improve a bootstrap confidence interval. The same idea can also be used for potentially
improving other bootstrap estimates than confidence intervals.

Suppose we wish to construct a (1−α)-confidence interval for a parameter θ based on
some estimator θ̂. The bootstrap interval I∗(1− α), as defined in (5.4), is not exact, i.e.,

P[θ ∈ I∗(1− α)] = 1− α + ∆n,

with some approximation error ∆n which will diminish as n→∞.
The main idea is now as follows: when changing the nominal coverage to 1 − α′ and

using I∗(1− α′), we can get an exact actual coverage

P[θ ∈ I∗(1− α′)] = 1− α.

The problem is that α′ is unknown. But another level of bootstrap can be used to estimate
α′, denoted by α̂′, which typically achieves

P[θ ∈ I∗(1− α̂′)] = 1− α + ∆′
n,

where the new approximation error ∆′
n is typically smaller than ∆n above.

A second level of bootstrap

In case where the original data Z1, . . . , Zn are replaced by n i.i.d. bootstrap realizations
Z∗

1 , . . . , Z∗
n, we can get an exact answer for the level α′ above. We can proceed in analogy

to the setting above, step by step.
First, suppose the data is Z∗

1 , . . . , Z∗
n. By using the bootstrap for the bootstrap data

Z∗
1 , . . . , Z∗

n, i.e., a second level bootstrap with Z∗∗
1 , . . . , Z∗∗

n (see below), we can construct
a confidence interval I∗∗(1 − α) as in (5.4). We can now inspect the actual coverage for
this second level bootstrap interval:

P∗[θ̂n ∈ I∗∗(1− α)] =: h∗(1− α)

for some function h∗ : [0, 1]→ [0, 1] which is increasing. Now use

1− α′∗ = h∗−1(1− α) (5.7)

so that

P∗[θ̂n ∈ I∗∗(1− α′∗)] = h∗(h∗−1(1− α)) = 1− α

is an exact confidence interval “in the bootstrap world” for the “parameter” θ̂n. Therefore,
the bootstrap estimate for the adjusted nominal coverage level is

1̂− α′ = 1− α′∗ from (5.7).

46 Bootstrap

Computation of bootstrap adjusted nominal level 1− α′∗

We can use a double (two-level) bootstrap scheme to approximately compute the value
1− α′∗ in (5.7).

1. Draw a bootstrap sample Z∗
1 , . . . , Z∗

n by resampling with replacement.

(a) Compute a bootstrap interval. That is, generate a second level bootstrap sam-
ple

Z∗∗
1 , . . . , Z∗∗

n

by resampling with replacement from Z∗
1 , . . . , Z∗

n. Then, analogous to (5.4),
construct the double bootstrap confidence interval

I∗∗(1− α) =
[
θ̂∗ − q̂∗1−α/2, θ̂∗ − q̂∗α/2

]
,

where q̂∗α = α − quantile of θ̂∗∗ − θ̂∗, θ̂∗∗ = g(Z∗∗
1 , . . . , Z∗∗

n). This is computed
by repeating step 1(a) B times to approximate q̂∗α by the empirical α-quantile
of θ̂∗∗1 − θ̂∗, . . . , θ̂∗∗B − θ̂∗.

(b) Evaluate whether the “parameter” θ̂ in the “bootstrap world” is in I∗∗(1− α):
i.e., consider

cover∗(1− α) = 1[θ̂∈I∗∗(1−α)].

2. Repeat M times all of step 1 to obtain cover∗1(1 − α), . . . , cover∗M (1 − α). This
amounts to M first level bootstrap replications Z∗m = Z∗m

1 , . . . , Z∗m
n (m = 1, . . . ,M)

and for each Z∗m, we run B second level bootstrap replications for step 1(a). Use

p∗(α) := M−1
M∑
i=1

cover∗i(1− α) (5.8)

as an approximation for P∗[θ̂ ∈ I∗∗(1− α)].

3. Vary α (in all of step 1 and 2!) to find α′∗ such that

p∗(α′∗) = 1− α (the desired nominal level) and use 1̂− α′ = 1− α′∗.

The search for α′∗ (a “zero finding problem”) can be done on a grid and/or by using
a bisection strategy.

The total amount of computation requires B ·M bootstrap samples. In case where
the bootstrap interval in (5.4) is computed with B bootstrap samples, and hence also the
interval I∗∗ in step 1(a), the adjustment with the double bootstrap may be less important
and it is then reasonable to use M < B since the magnitude of M only determines the
approximation for computing the actual level P∗[θ̂ ∈ I∗∗(1 − α)] (for I∗∗ computed with
B bootstrap replications).

An example

We illustrate now the double bootstrap for confidence intervals in curve estimation. Fig-
ure 5.2 displays the data, having sample size n = 100, and a curve estimator.

Figure 5.3 then shows how the double bootstrap is used to estimate the actual coverage:
displayed is an approximation of P∗[θ̂n ∈ I∗∗(1−α)] for various nominal levels 1−α. It also
indicates the values for the corrected levels 1−α′∗ and it also demonstrates the effect when
using a double-bootstrap corrected confidence interval instead of an ordinary interval.

5.4 Model-based bootstrap 47

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−2
.5

−1
.5

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

y

Figure 5.2: Data (n = 100) and estimated curve (red) using a Nadaraya Watson Gaussian
kernel estimator with bandwidth h = 0.25.

5.4 Model-based bootstrap

Efron’s nonparametric bootstrap can be viewed as simulating from the empirical distribu-
tion P̂n: that is, we simulate from a very general estimated nonparametric model, where
the model says that the data is i.i.distributed with an unknown distribution P .

5.4.1 Parametric bootstrap

Instead of such a general nonparametric model, we sometimes assume that the data are
realizations from

Z1, . . . , Zn i.i.d. ∼ Pθ,

where Pθ is given up to an unknown parameter (vector) θ.
As one among very many examples: the data could be real-valued assumed to be from

the parametric model

X1, . . . , Xn i.i.d. ∼ N (µ, σ2), θ = (µ, σ2).

In order to simulate from the parametric model, we first estimate the unknown pa-
rameter θ by θ̂ such as least squares in regression or maximum likelihood in general. The
parametric bootstrap then proceeds by using

Z∗
1 , . . . , Z∗

n i.i.d. ∼ Pθ̂,

instead of (5.2). Everything else, e.g. construction of confidence intervals, can then be
done exactly as for Efron’s nonparametric bootstrap.

48 Bootstrap

0.80 0.84 0.88 0.92 0.96 1.00

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

x = −1

nominal coverage 1 − α

es
tim

. a
ct

ua
l c

ov
er

ag
e

0.86

0.80 0.84 0.88 0.92 0.96 1.00

0.
78

0.
82

0.
86

0.
90

0.
94

0.
98

x = 0

nominal coverage 1 − α

es
tim

. a
ct

ua
l c

ov
er

ag
e

0.922

0.80 0.84 0.88 0.92 0.96 1.000.
64

0.
68

0.
72

0.
76

0.
80

0.
84

0.
88

x = 1

nominal coverage 1 − α

es
tim

. a
ct

ua
l c

ov
er

ag
e

0.998

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2

−1
.0

−0
.6

−0
.2

0.
2

0.
4

0.
6

0.
8

simple and double bootstrap c.i.

x

θ̂
an

d
C.

I.

Figure 5.3: Double bootstrap confidence intervals for nonparametric curve at three pre-
dictor points x ∈ {−1, 0, 1}. The data (n = 100) and estimated curve are shown in
Figure 5.2. The first three panels show the estimated actual coverages (p∗(α)) of a boot-
strap confidence interval by using the double bootstrap. The values 1 − α′∗ (for actual
level 1 − α = 0.9) are 0.86, 0.922, 0.998 for the points x = −1, 0, 1, respectively. The
fourth panel shows the ordinary bootstrap confidence intervals (solid line) and the double
bootstrap corrected versions (dotted line, in red) for x ∈ {−1, 0, 1}. The double bootstrap
was used with B = 1000 and M = 500.

5.4 Model-based bootstrap 49

Advantages and disadvantages

Why should we choose the parametric instead of the nonparametric bootstrap? The answer
is “classical”: if the parametric model is a very good description for the data, then the
parametric bootstrap should yield more accurate variance estimates or confidence intervals
since Pθ̂ is then “closer” to the true data-generating P than the nonparametric empirical
distribution P̂n. Particularly when sample size n is small, the nonparametric estimate P̂n

may be poor. On the other hand, the nonparametric bootstrap is not (or less) sensitive
to model-misspecification.

5.4.2 Model structures beyond i.i.d. and the parametric bootstrap

Linear model with fixed predictors

For example, a linear model with fixed predictors xi ∈ Rp and Gaussian errors

Yi = βᵀxi + εi (i = 1, . . . , n),
ε1, . . . , εn i.i.d. ∼ N (0, σ2), θ = (β, σ2)

is a parametric model. The bootstrap sample can then be constructed as follows:

1. Simulate ε∗1, . . . , ε
∗
n i.i.d. ∼ N (0, σ̂2).

2. Construct
Y ∗

i = β̂ᵀxi + ε∗i , i = 1, . . . , n.

The parametric bootstrap regression sample is then

(x1, Y
∗
1), . . . , (xn, Y ∗

n),

where the predictors xi are as for the original data.

Autoregressive models for time series

A Gaussian autoregressive model of order p for stationary time series is

Xt =
p∑

j=1

φjXt−j + εt (t = 1, . . . , n),

ε1, . . . , εn i.i.d. ∼ N (0, σ2),

where Xt ∈ R. Such a model produces correlated observations and is widely used for
describing time-dependent observations. Parametric bootstrapping can then be done as
follows:

1. Generate ε∗1, . . . , ε
∗
n+m i.i.d. ∼ N (0, σ̂2) with m ≈ 1000.

2. Construct recursively, starting with X∗
0 = X∗

−1 = . . . = X∗
−p+1 = 0,

X∗
t =

p∑
j=1

φ̂jX
∗
t−j + ε∗t , t = 1, . . . , n + m.

3. Use the bootstrap sample
X∗

m+1, . . . , X
∗
n+m.

The reason to throw away the first values X∗
1 , . . . X∗

m is to obtain a bootstrap sample
which is approximately a stationary process (by choosing m large, the arbitrary
starting values in step 2 will be almost forgotten).

50 Bootstrap

5.4.3 The model-based bootstrap for regression

A compromise between Efron’s non- and the parametric bootstrap for regression is given
by assuming possibly non-Gaussian errors. The model for the original data is

Yi = m(xi) + εi,

ε1, . . . , εn i.i.d. ∼ Pε,

where Pε is unknown with expectation 0. The regression function m(·) may be parametric
or nonparametric. The model-based bootstrap works then as follows:

1. Estimate m̂ from the original data and compute the residuals ri = Yi − m̂(xi).

2. Consider the centered residuals r̃i = ri−n−1
∑n

i=1 ri. In case of linear regression with
an intercept, the residuals are already centered. Denote the empirical distribution
of the centered residuals by P̂r̃.

3. Generate
ε∗1, . . . , ε

∗
n i.i.d. ∼ P̂r̃.

Note that P̂r̃ is an estimate of Pε.

4. Construct the bootstrap response variables

Y ∗
i = m̂(xi) + ε∗i , i = 1, . . . , n,

and the bootstrap sample is then (x1, Y
∗
1), . . . , (xn, Y ∗

n).

Having the bootstrap sample from step 4, we can then proceed as for Efron’s nonpara-
metric bootstrap for constructing variance estimates or confidence intervals.

The advantage of the model-based bootstrap is that we do not rely on a Gaussian error
assumption. The same discussion then applies about advantages and disadvantages as in
section 5.4.1.

