
Chapter 3

Nonparametric Regression

3.1 Introduction

We consider here nonparametric regression with one predictor variable. Practically rele-
vant generalizations to more than one or two predictor variables are not so easy due to the
curse of dimensionality mentioned in section 2.4.1 and often require different approaches,
as will be discussed later in Chapter 7.

Figure 3.1 shows (several identical) scatter plots of (xi, Yi) (i = 1, . . . , n). We can
model such data as

Yi = m(xi) + εi, (3.1)

where ε1, . . . , εn i.i.d. with E[εi] = 0 and m : R → R is an “arbitrary” function. The
function m(·) is called the nonparametric regression function and it satisfies m(x) =
E[Y |x]. The restriction we make for m(·) is that it fulfills some kind of smoothness
conditions. The regression function in Figure 3.1 does not appear to be linear in x and
linear regression is not a good model. The flexibility to allow for an “arbitrary” regression
function is very desirable; but of course, such flexibility has its price, namely an inferior
estimation accuracy than for linear regression.

3.2 The kernel regression estimator

We can view the regression function in (3.1) as

m(x) = E[Y |X = x],

(assuming that X is random and Xi = xi are realized values of the random variables). We
can express this conditional expectation as∫

R
yfY |X(y|x)dy =

∫
R yfX,Y (x, y)dy

fX(x)
,

where fY |X , fX,Y , fX denote the conditional, joint and marginal densities. We can now
plug in the univariate and bivariate kernel density (all with the same univariate kernel K)
estimates

f̂X(x) =
∑n

i=1 K
(

x−xi
h

)
nh

, f̂X,Y (x, y) =

∑n
i=1 K

(
x−xi

h

)
K
(

y−Yi

h

)
nh2

25

26 Nonparametric Regression

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

polynomial

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

bin {‘regressogram’}

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

running mean (k = 4)

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

running line (k = 6)

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

loess (deg.=2)

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

gaussian kernel

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

smoothing spline

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

regression spline

*

*

*
*
*

*

*

*

*
**

*

*
**

**

*

* **
*
*
*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*

**

natural spline

Figure 3.1: Various regression estimators in model Yi = m(xi)+ εi (i = 1, . . . , 43) with re-
sponse Y a log-concentration of a serum (in connection of Diabetes) and predictor variable
x the age in months of children. See Hastie and Tibshirani (1990, p.10). Except for the
linear regression fit (top left panel), all other estimators have about 5 degrees of freedom.

into the formula above which yields the so-called Nadaraya-Watson kernel estimator

m̂(x) =
∑n

i=1 K((x− xi)/h)Yi∑n
i=1 K((x− xi)/h)

=
∑n

i=1 ωiYi∑
i ωi

, (3.2)

3.2 The kernel regression estimator 27

i.e., a weighted mean of the Yi where ωi = ωi(x) is a kernel centered at xi. An interesting
interpretation of the kernel regression estimator in (3.2) is

m̂(x) = arg min
mx∈R

n∑
i=1

K

(
x− xi

h

)
(Yi −mx)2. (3.3)

This can be easily verified by solving d
dmx

∑n
i=1 K((x − xi)/h)(Yi −mx)2 = 0. Thus, for

every fixed x, we are searching for the best local constant mx such that the localized
sum of squares is minimized; localization is here described by the kernel and gives a large
weight to those observations (xi, Yi) where xi is close to the point x of interest.

3.2.1 The role of the bandwidth

Analogously as in section 2.3, the bandwidth h controls the bias-variance trade-off: a large
bandwidth h implies high bias but small variance, resulting in a slowly varying curve, and
vice-versa. We are not showing the computations for MSE(x), just note that they not
only depend on (derivatives of) m(x), but also on fX(x).

Local bandwidth selection

Similarly as in (2.7), also using
∫

uK(u)du = 0, there is a formula of the asymptotically
best local bandwidth hopt(x) which depends on m′′(·) and the error variance σ2

ε :

hopt(x) = n−1/5

(
σ2

ε

∫
K2(z)dz

{m′′(x)
∫

z2K(z)dz}2

)1/5

. (3.4)

The locally optimal bandwidth hopt(x) can then be estimated in an iterative way using

0.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

4 6 8 10 12 14 16 18 20 22 24

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

Cars Data − Local Plug−In Bandwidths via lokerns()

speed

di
st

bandwidth in [0.934,1.949]; Median b.w.= 1.465

Figure 3.2: Nonparametric function estimate and locally varying bandwidths for distance
of stopping as a function of speed of cars.

the plug-in principle. Roughly speaking, start with an initial bandwidth h0 to estimate

28 Nonparametric Regression

m′′(·) (by using an inflated version n1/10h0) and σ2
ε ; these estimates can then be used

to get a first estimate of hopt(x). Now use this first bandwidth estimate as the current
bandwidth h1 to estimate again m′′(·) (by using the inflated version n1/10h1) and σ2

ε , and
then obtain new estimates for hopt(x); and so on, see Brockmann et al. (1993).

Such a procedure has been implemented in R with the function lokerns in the package
lokern. The dataset cars contains the distance for stopping as a function of speed of
a car. A nonparametric function estimate with locally varying bandwidth can then be
obtained as follows:

library(lokern); lofit <- lokerns(cars$ speed, cars$ dist)

3.2.2 Inference for the underlying regression curve

We consider here the properties, in particular the variability, of the kernel estimator m̂(xi)
at an observed design point xi.

The hat matrix

It is useful to represent the kernel estimator evaluated at the design points m̂(x1), . . . , m̂(xn)
as a linear operator (on Rn, i.e., a matrix):

S : Rn → Rn,

(Y1, . . . , Yn)ᵀ 7→ (m̂(x1), . . . , m̂(xn))ᵀ =: m̂(x·) = Ŷ,

i.e., Ŷ = SY where S is the matrix representing the linear operator above. The kernel
estimator in (3.2) is of the form

m̂(x) =
n∑

i=1

wi(x)Yi, wi(x) =
K((x− xi)/h)∑n

j=1 K((x− xj)/h)
.

Therefore, the matrix S which represents the operator above is

[S]r,s = ws(xr), r, s ∈ {1, . . . , n},

since S{(Y1, . . . , Yn)ᵀ} = (m̂(x1), . . . , m̂(xn))ᵀ. The “smoother” matrix S is also called
the “hat matrix”, since it yields the vector of fitted values (at the observed design points
xi). Note that many other nonparametric regression methods (including those in the next
two sections) can be seen to be linear in Y and hence be written as Ŷ = SY where
S depends on the x-design (x1, x2, . . . , xn) and typically a smoothing parameter, say h.
Algorithmically, for Ŷ = s(x,Y, h), the hat matrix can easily be computed columnwise
as S.,j = s(x, ej , h) where ej is the unit vector with (ej)i = δi,j := 1(i = j).

Because of the elementary formula Cov(AX) = A Cov(X)Aᵀ (for a non-random matrix
A and random vector X), we get the covariance matrix

Cov(m̂(x·)) = σ2
εSSᵀ, (3.5)

i.e., Cov(m̂(xi), m̂(xj)) = σ2
ε(SSᵀ)ij , and Var(m̂(xi)) = σ2

ε(SSᵀ)ii.

Degrees of freedom

One way to assign degrees of freedom for regression estimators with a linear hat-operator
S is given by

df = trace(S). (3.6)

3.3 Local polynomial nonparametric regression estimator 29

This definition coincides with the notion we have seen in the linear model: there, (1.5),
the fitted values Ŷ1, . . . , Ŷn can be represented by the projection P = X(XᵀX)−1Xᵀ,
which is the hat matrix, and trace(P) = trace((XᵀX)−1XᵀX) = trace(Ip) = p equals the
number of parameters in the model. Thus, the definition of degrees of freedom above can
be viewed as a general concept for the number of parameters in a model fit with linear
hat matrix.

Estimation of the error variance

Formula (3.5) requires knowledge of σ2
ε . A plausible estimate is via the residual sum of

squares,

σ̂2
ε =

∑n
i=1(Yi − m̂(xi))2

n− df
.

We then get an estimate for the standard error of the kernel regression estimator at the
design points via (3.5):

ŝ.e(m̂(xi)) =
√

V̂ar(m̂(xi)) =

√∑n
j=1(Yj − m̂(xj))2

n− df
(SSᵀ)ii.

The estimated standard errors above are useful since under regularity conditions, m̂(xi)
is asymptotically normal distributed:

m̂(xi) ≈ N (E[m̂(xi)],Var(m̂(xi))),

so that

I = m̂(xi)± 1.96 · ŝ.e.(m̂(xi))

yields approximate pointwise confidence intervals for E[m̂(xi)]. Some functions in R (e.g.
the function gam from package mgcv, see Chapter 7) supply such pointwise confidence
intervals. Unfortunately, it is only a confidence interval for the expected value E[m̂(xi)]
and not for the true underlying function m(xi). Correction of this interval is possible by
subtracting a bias estimate: i.e., instead of the interval I above, we can use I − b̂ias,
where b̂ias is an estimate of the bias (which is not so easy to construct; see also section 2.3).

3.3 Local polynomial nonparametric regression estimator

As a starting point, consider the kernel estimator which can be represented as a locally
constant function as in (3.3). This can now be extended to functions which are locally
polynomial. We aim to find local regression parameters β(x), defined as

β̂(x) = arg min
β∈Rp

n∑
i=1

K

(
x− xi

h

)(
Yi − β1 − β2(xi − x)− . . .− βp(xi − x)p−1

)2
.

An even number p turns out to be better: in practice, we often choose p = 2 or p = 4.
The estimated local regression parameter β̂(x) describes a local polynomial regression fit,
localized and centered at x. The function estimator is then given by evaluating this local
regression fit

∑p
j=1 β̂j(x)(u−x)j−1 at u = x: due to the centering, only the local intercept

remains and the local polynomial function estimator becomes

m̂(x) = β̂1(x).

30 Nonparametric Regression

Note that due to (local) correlation among the (xi−x)j ’s, β̂1(x) is not the same as a local
constant fit from (3.3).

The local polynomial estimator is often better at the edges than the locally constant
Nadaraya-Watson kernel estimator. Another interesting property is that the method also
immediately yields estimates for the derivatives of the function: when differentiating the
local regression fit

∑p
j=1 β̂j(x)(u−x)j−1 with respect to u and evaluating it at x, we obtain

m̂(r)(x) = r!β̂r+1(x) (r = 0, 1, . . . p− 1).

3.4 Smoothing splines and penalized regression

Function estimation could also be done by using higher order global polynomials, which is
often not advisable, or by using splines which can be specified by choosing a set of knots.
The latter is a more locally oriented approach and is called “regression splines”. Here, we
discuss a method based on splines without having to specify where to select the knots of
the spline.

3.4.1 Penalized sum of squares

Consider the following problem: among all functions m with continuous second derivatives,
find the one which minimizes the penalized residual sum of squares

n∑
i=1

(Yi −m(xi))2 + λ

∫
m′′(z)2dz, (3.7)

where λ ≥ 0 is a smoothing parameter. The first term measures closeness to the data and
the second term penalizes curvature (“roughness”) of the function. The two extreme cases
are:

• λ = 0: m is any function interpolating the data (but for λ→ 0, in the limit, mλ →
the well defined interpolating natural cubic spline).

• λ =∞: the least squares fit for linear regression which fulfills m′′(x) ≡ 0.

Thus, a large λ corresponds to a smooth function.

3.4.2 The smoothing spline solution

Remarkably, the minimizer of (3.7) is finite-dimensional, although the criterion to be
minimized is over a Sobolev space of functions (function space for which the integral∫

m′′2 is defined), an infinite-dimensional space. Let us assume for now that the data has
x values sorted and unique, x1 < x2 < . . . < xn.

The solution m̂λ(·) (i.e., the unique minimizer of (3.7)) is a natural cubic spline with
knots at the predictors xi: that is, m̂ is a piecewise cubic polynomial in each interval
[xi, xi+1) such that m̂

(k)
λ (k = 0, 1, 2) is continuous everywhere and (“natural”) m̂′′(x1) =

m̂′′(xn) = 0. For the n − 1 cubic polynomials, we’d need (n − 1) · 4 coefficients. Since
there are (n− 2) · 3 continuity conditions (at every “inner knot”, i = 2, . . . , n− 1) plus the
2 “natural” conditions, this leaves 4(n− 1)− [3(n− 2) + 2] = n free parameters (the βj ’s

3.4 Smoothing splines and penalized regression 31

below). Knowing that the solution is a cubic spline, it can be obtained by linear algebra.
The trick is to represent

m̂λ(x) =
n∑

j=1

βjBj(x), (3.8)

where the Bj(·)’s are basis functions for natural splines. The unknown coefficients can then
be estimated from least squares in linear regression under side constraints. The criterion
in (3.7) for m̂λ as in (3.8) then becomes

‖Y −Bβ‖2 + λβᵀΩβ,

where the design matrix B has jth column (Bj(x1), . . . , Bj(xn))ᵀ and Ωjk =
∫

B′′
j (z)B′′

k(z)dz.
The solution can then be derived in a straightforward way,

β̂n×1 = (BᵀB + λΩ)−1BᵀY. (3.9)

This can be computed efficiently using fast linear algebra, particularly when B is a banded
matrix.

The fitted values are then Ŷi = m̂λ(xi) (i = 1, . . . , n) and

(Ŷ1, . . . , Ŷn)ᵀ = SλY, Sλ = B(BᵀB + λΩ)−1Bᵀ. (3.10)

The hat matrix Sλ = Sλ
ᵀ is here symmetric which implies elegant mathematical prop-

erties (real-valued eigen-decomposition).

3.4.3 Shrinking towards zero

At first sight, the smoothing spline solution in (3.8) looks heavily over-parameterized since
we have to fit n unknown coefficients β1, . . . , βn. However, the solution in (3.9) is not the
least squares estimator but rather a Ridge-type version: the matrix λΩ serves as a Ridge
or shrinkage matrix so that the estimates β̂ are shrunken towards zero: i.e., for large λ,
the expression (BᵀB + λΩ)−1 becomes small. Thus, since all the coefficients are shrunken
towards zero, we gain on the variance part of each β̂j by the square of the shrinkage factor,
and the overall smoothing spline fit will be appropriate if λ is chosen suitably.

Note that λ can be chosen on the scale of equivalent degrees of freedom (df): df =
trace(Sλ). This provides an intuitive way to specify a smoothing spline: e.g. a smoothing
spline with df=5 is as complex as a global polynomial of degree 4 (which has 5 parameters
including the intercept), see also Figure 3.1.

3.4.4 Relation to equivalent kernels

It is interesting to note that there is a relationship between the smoothing spline estimate
and a particular kernel estimator. The smoothing spline estimate m̂(x) is approximately

m̂λ(x) ≈
n∑

i=1

wi(x)Yi,

wi(x) =
1

nh(x)fX(x)
K

(
x− xi

h(x)

)
,

h(x) = λ1/4n−1/4fX(x)−1/4,

K(u) =
1
2

exp
(
− |u|√

2

)
sin
(
|u|√

2
+

π

4

)
.

32 Nonparametric Regression

See for example Green and Silverman (1994, Ch. 3.7).
The important fact is here that the bandwidth of the equivalent kernel estimator has

a local bandwidth, depending on the density of the predictor variable x. In regions where
the density of the predictor is low (observations are sparse), the bandwidth automatically
adapts and becomes large: intuitively, this is the right behavior because we should use
strong smoothing in regions where only few observations are available.

An example of a smoothing spline fit for real data is displayed in Figure 3.1. Finally,
we illustrate on an artificial dataset the advantage of smoothing splines to adapt to the
density of the predictor variables. Figure 3.3 shows the performance of smoothing splines
in comparison with the Nadaraya-Watson Gaussian kernel estimator. The data has the
following structure:
• the density of the predictor is high for positive values and low for negative values
• the true function is strongly oscillating where the predictor density is high

and slowly oscillating where the predictors are sparse
The smoothing spline fit (using the GCV criterion for selecting the degrees of freedom,
see section 4.5) yields a very good fit: it captures the strong oscillations because there
are many data points with positive values of the predictors. On the other hand, the
kernel estimator has been tuned such that it captures the strong oscillations, using a small
bandwidth h (this was done by knowing the true underlying function – which is not feasible
in practice): but the small bandwidth h then causes a much too rough and poor estimate
for negative predictor values, although the underlying true function is smooth.

−4 −2 0 2 4

−2
0

2
4

6

Data + Smoothing Spline

x

y

−4 −2 0 2 4

−2
0

2
4

6

Smoothing Spline

x

y

−4 −2 0 2 4

−2
0

2
4

6

Data + Kernel Estimator

x

y

−4 −2 0 2 4

−2
0

2
4

6

Kernel Estimator

x

y

Figure 3.3: Curve estimation for synthetic dataset (n = 417). Left panels: scatterplot,
overlaid with curve estimates (red) and true curve (gray); Right panels: curve estimates
(red) and true curve (gray).
Top: Smoothing spline with GCV-selected df (= 9.23); Bottom: Nadaraya-Watson kernel
estimator with bandwidth chosen for good estimation of the strong oscillations of the true
function (giving df = 25.6).

