
Chapter 2

Nonparametric Density
Estimation

2.1 Introduction

For a moment, we will go back to simple data structures: we have observations which are
realizations of univariate random variables,

X1, . . . , Xn i.i.d. ∼ F,

where F denotes an unknown cumulative distribution function. The goal is to estimate
the distribution F . In particular, we are interested in estimating the density f = F ′,
assuming that it exists.

Instead of assuming a parametric model for the distribution (e.g. Normal distribution
with unknown expectation and variance), we rather want to be “as general as possible”:
that is, we only assume that the density exists and is suitably smooth (e.g. differentiable).
It is then possible to estimate the unknown density function f(·). Mathematically, a
function is an infinite-dimensional object. Density estimation will become a “basic
principle” how to do estimation for infinite-dimensional objects. We will make use of such
a principle in many other settings such as nonparametric regression with one predictor
variable (Chapter 3) and flexible regression and classification methods with many predictor
variables (Chapter 7).

2.2 Estimation of a density

We consider the data which records the duration of eruptions of “Old Faithful”, a famous
geysir in Yellowstone National Park (Wyoming, USA). You can watch it via web-cam on
http://www.nps.gov/yell/oldfaithfulcam.htm

2.2.1 Histogram

The histogram is the oldest and most popular density estimator. We need to specify an
“origin” x0 and the class width h for the specifications of the intervals

Ij = (x0 + j · h, x0 + (j + 1)h] (j = . . . ,−1, 0, 1, . . .)

for which the histogram counts the number of observations falling into each Ij : we then plot
the histogram such that the area of each bar is proportional to the number of observations
falling into the corresponding class (interval Ij).
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Figure 2.1: Histograms (different class widths) for durations of eruptions of “Old Faithful”
geysir in Yellowstone Park (n = 272, data(faithful)).
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The choice of the “origin” x0 is highly arbitrary, whereas the role of the class width
is immediately clear for the user. The form of the histogram depends very much on these
two tuning parameters.

2.2.2 Kernel estimator

The naive estimator

Similar to the histogram, we can compute the relative frequency of observations falling
into a small region. The density function f(·) at a point x can be represented as

f(x) = lim
h→0

1
2h

P[x− h < X ≤ x + h]. (2.1)

The naive estimator is then constructed without taking the limit in (2.1) and by replacing
probabilities with relative frequencies:

f̂(x) =
1

2hn
#{i;Xi ∈ (x− h, x + h]}. (2.2)

This naive estimator is only piecewise constant since every Xi is either in or out of the
interval (x− h, x + h]. As for histograms, we also need to specify the so-called bandwidth
h; but in contrast to the histogram, we do not need to specify an origin x0.

An alternative representation of the naive estimator (2.2) is as follows. Define the
weight function

w(x) =
{

1/2 if |x| ≤ 1,
0 otherwise.
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Then,

f̂(x) =
1

nh

n∑
i=1

w

(
x−Xi

h

)
.

If we choose instead of the rectangle weight function w(·) a general, typically more smooth
kernel function K(·), we have the definition of the kernel density estimator

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

K(x) ≥ 0,

∫ ∞

−∞
K(x)dx = 1, K(x) = K(−x). (2.3)

The estimator depends on the bandwidth h > 0 which acts as a tuning parameter. For
large bandwidth h, the estimate f̂(x) tends to be very slowly varying as a function of x,
while small bandwidths will produce a more wiggly function estimate. The positivity of
the kernel function K(·) guarantees a positive density estimate f̂(·) and the normalization∫

K(x)dx = 1 implies that
∫

f̂(x)dx = 1 which is necessary for f̂(·) to be a density.
Typically, the kernel function K(·) is chosen as a probability density which is symmetric
around 0.

The smoothness of f̂(·) is inherited from the smoothness of the kernel: if the rth
derivative K(r)(x) exists for all x, then f̂ (r)(x) exists as well for all x (easy to verify using
the chain rule for differentiation).

Popular kernels are the Gaussian kernel

K(x) = ϕ(x) = (2π)−
1
2 e−x2/2 (the density of the N (0, 1) distribution)

or a kernel with finite support such as K(x) = π
4 cos(π

2 x)1(|x| ≤ 1). The Epanechnikov
kernel, which is optimal with respect to mean squared error, is

K(x) =
3
4

(
1− |x|2

)
1(|x| ≤ 1).

But far more important than the kernel is the bandwidth h, see figure 2.2: its role and
how to choose it are discussed below.
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Figure 2.2: kernel density estimates of the “Old Faithful” eruption lengths; Gaussian kernel and
bandwidths h = 0.04 · 1.61,2,...,5.

2.3 The role of the bandwidth

The bandwidth h is often also called the “smoothing parameter”: a moment of thought
will reveal that for h → 0, we will have “δ-spikes” at every observation Xi, whereas f̂(·)
becomes smoother as h is increasing.
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2.3.1 Variable bandwidths: k nearest neighbors

Instead of using a global bandwidth, we can use locally changing bandwidths h(x).
The general idea is to use a large bandwidth for regions where the data is sparse. The

k-nearest neighbor idea is to choose

h(x) = Euclidean distance of x to the kth nearest observation,

where k is regulating the magnitude of the bandwidth. Note that generally, f̂(·) will not
be a density anymore since the integral is not necessarily equal to one.

2.3.2 The bias-variance trade-off

We can formalize the behavior of f̂(·) when varying the bandwidth h in terms of bias and
variance of the estimator. It is important to understand heuristically that

the (absolute value of the) bias of f̂ increases and the variance of f̂ decreases as h increases.

Therefore, if we want to minimize the mean squared error MSE(x) at a point x,

MSE(x) = E
[(

f̂(x)− f(x)
)2
]

=
(
E[f̂(x)]− f(x)

)2
+ Var(f̂(x)),

we are confronted with a bias-variance trade-off. As a consequence, this allows - at
least conceptually - to optimize the bandwidth parameter (namely to minimize the mean
squared error) in a well-defined, coherent way. Instead of optimizing the mean squared
error at a point x, one may want to optimize the integrated mean squared error (IMSE)

IMSE =
∫

MSE(x)dx

which yields an integrated decomposition of squared bias and variance (integration is over
the support of X). Since the integrand is non-negative, the order of integration (over
the support of X and over the probability space of X) can be reversed, denoted as MISE
(mean integrated squared error) and written as

MISE = E[
∫ (

f̂(x)− f(x)
)2

dx] (2.4)

2.3.3 Asymptotic bias and variance

It is straightforward (using definitions) to give an expression for the exact bias and vari-
ance:

E[f̂(x)] =
∫

1
h

K

(
x− y

h

)
f(y)dy

Var(f̂(x))

=
1

nh2
Var

(
K

(
x−Xi

h

))
=

1
nh2

E

[
K

(
x−Xi

h

)2
]
− 1

nh2
E
[
K

(
x−Xi

h

)]2

= n−1

∫
1
h2

K

(
x− y

h

)2

f(y)dy − n−1

(∫
1
h

K

(
x− y

h

)
f(y)dy

)2

. (2.5)
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For the bias we therefore get

Bias(x) =
∫

1
h

K

(
x− y

h

)
f(y)dy − f(x)

=︸︷︷︸
change of variable

∫
K(z)f(x− hz)dz − f(x) =

∫
K(z) (f(x− hz)− f(x)) dz. (2.6)

To approximate this expression in general, we invoke an asymptotic argument. We assume
that h→ 0 as sample size n→∞, that is:

h = hn → 0 with nhn →∞.

This will imply that the bias goes to zero since hn → 0; the second condition requires that
hn is going to zero more slowly than 1/n which turns out to imply that also the variance
of the estimator will go to zero as n → ∞. To see this, we use a Taylor expansion of f ,
assuming that f is sufficiently smooth:

f(x− hz) = f(x)− hzf ′(x) +
1
2
h2z2f ′′(x) + . . .

Plugging this into (2.6) yields

Bias(x) = −hf ′(x)
∫

zK(z)dz︸ ︷︷ ︸
=0

+
1
2
h2f ′′(x)

∫
z2K(z)dz + . . .

=
1
2
h2f ′′(x)

∫
z2K(z)dz + higher order terms in h.

For the variance, we get from (2.5)

Var(f̂(x)) = n−1

∫
1
h2

K

(
x− y

h

)2

f(y)dy − n−1(f(x) + Bias(x))2

= n−1h−1

∫
f(x− hz)K(z)2dz − n−1(f(x) + Bias(x))2︸ ︷︷ ︸

=O(n−1)

= n−1h−1

∫
f(x− hz)K(z)2dz + O(n−1) = n−1h−1f(x)

∫
K(z)2dz + o(n−1h−1),

assuming that f is smooth and hence f(x− hz)→ f(x) as hn → 0.
In summary: for h = hn → 0, hnn→∞ as n→∞

Bias(x) = h2f ′′(x)
∫

z2K(z) dz/2 + o(h2) (n→∞)
Var(f̂(x)) = (nh)−1f(x)

∫
K(z)2dz + o((nh)−1) (n→∞)

The optimal bandwidth h = hn which minimizes the leading term in the asymptotic
MSE(x) can be calculated straightforwardly by solving ∂

∂hMSE(x) = 0,

hopt(x) = n−1/5

(
f(x)

∫
K2(z)dz

(f ′′(x))2(
∫

z2K(z)dz)2

)1/5

. (2.7)
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Since it’s not straightforward to estimate and use a local bandwidth h(x), one rather
considers minimizing the MISE, i.e.,

∫
MSE(x) dx which is asymptotically

asympt. MISE =
∫

Bias(x)2 + Var(f̂(x)) dx =
1
4
h4R(f ′′) σ4

K + R(K)/(nh), (2.8)

where R(g) =
∫

g2(x) dx, σ2
K =

∫
x2K(x) dx, and the “global” asymptotically optimal

bandwidth becomes
hopt = n−1/5

(
R(K)/σ4

K × 1/R(f ′′)
)1/5

. (2.9)

By replacing h with hopt, e.g., in (2.8), we see that both variance and bias terms are of
order O(n−4/5), the optimal rate for the MISE and MSE(x). From section 2.4.1, this rate
is also optimal for a much larger class of density estimators.

2.3.4 Estimating the bandwidth

As seen from (2.9), the asymptotically best bandwidth depends on R(f ′′) =
∫

f ′′2(x) dx
which is unknown (whereas as R(K) and σ2

K are known). It is possible to estimate the
f ′′ again by a kernel estimator with an “initial” bandwidth hinit (sometimes called a
pilot bandwidth) yielding f̂ ′′hinit

. Plugging this estimate into (2.9) yields an estimated
bandwidth ĥ for the density estimator f̂(·) (the original problem): of course, ĥ depends
on the initial bandwidth hinit, but choosing hinit in an ad-hoc way is less critical for
the density estimator than choosing the bandwidth h itself. Furthermore, methods have
been devised to determine hinit and h simultaneously (e.g., “Sheather-Jones”, in R using
density(*, bw="SJ")).

Estimating local bandwidths

Note that the hopt(x) bandwidth selection in (2.7) is more problematical mainly because
f̂ĥopt(x)(x) will not integrate to one without further normalization. On the other hand, it
can be important to use locally varying bandwidths instead of a single global one in a kernel
estimator at the expense of being more difficult. The plug-in procedure outlined above
can be applied locally, i.e., conceptually for each x and hence describes how to estimate
local bandwidths from data and how to implement a kernel estimator with locally varying
bandwidths. In the related area of nonparametric regression, in section 3.2.1, we will show
an example about locally changing bandwidths which are estimated based on an iterative
version of the (local) plug-in idea above.

Other density estimators

There are quite a few other approaches to density estimation than the kernel estima-
tors above (whereas in practice, the fixed bandwidth kernel estimators are used predomi-
nantly because of their simplicity). An important approach in particular aims to estimate
the log density log f(x) (setting f̂ = exp(l̂og f)) which has no positivity constraints and
whose “normal limit” is a simple quadratic. One good implementation is in Kooperberg’s
R package logspline, where spline knots are placed in a stepwise algorithm minimiz-
ing approximate BIC (or AIC). This is can be seen as another version of locally varying
bandwidths.
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2.4 Higher dimensions

Quite many applications involve multivariate data. For simplicity, consider data which
are i.i.d. realizations of d-dimensional random variables

X1, . . . ,Xn i.i.d. ∼ f(x1, . . . , xd)dx1 · · · dxd

where f(·) denotes the multivariate density.
The multivariate kernel density estimator is, in its simplest form, defined as

f̂(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
,

where the kernel K(·) is now a function, defined for d-dimensional x, satisfying

K(u) ≥ 0,

∫
Rd

K(u)du = 1,

∫
Rd

uK(u)du = 0,

∫
Rd

uuᵀK(u)du = Id.

Usually, the kernel K(·) is chosen as a product of a kernel Kuniv for univariate density
estimation

K(u) =
d∏

j=1

Kuniv(uj).

If one additionally desires the multivariate kernel K(u) to be radially symmetric, it
can be shown that K must be the multivariate normal (Gaussian) density, K(u) =
cd exp(−1

2u
ᵀu).

2.4.1 The curse of dimensionality

In practice, multivariate kernel density estimation is often restricted to dimension d = 2.
The reason is, that a higher dimensional space (with d of medium size or large) will be
only very sparsely populated by data points. Or in other words, there will be only very few
neighboring data points to any value x in a higher dimensional space, unless the sample
size is extremely large. This phenomenon is also called the curse of dimensionality.

An implication of the curse of dimensionality is the following lower bound for the best
mean squared error of nonparametric density estimators (assuming that the underlying
density is twice differentiable): it has been shown that the best possible MSE rate is

O(n−4/(4+d)).

The following table evaluates n−4/(4+d) for various n and d:

n−4/(4+d) d = 1 d = 2 d = 3 d = 5 d = 10
n = 100 0.025 0.046 0.072 0.129 0.268
n = 1000 0.004 0.010 0.019 0.046 0.139

n = 100′000 1.0 10−4 4.6 10−4 13.9 10−4 0.006 0.037

Thus, for d = 10, the rate with n = 100′000 is still 1.5 times worse than for d = 1 and
n = 100.
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