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Chapter 1

Multiple Linear Regression

1.1 Introduction

Linear regression is a widely used statistical model in a broad variety of applications. It
is one of the easiest examples to demonstrate important aspects of statistical modelling.

1.2 The Linear Model

Multiple Regression Model:

Given is one response variable: up to some random errors

it is a linear function of several predictors (or covariables).

The linear function involves unknown parameters. The goal is to estimate these
parameters, to study their relevance and to estimate the error variance.

Model formula:

Yi =Pz + ...+ Bpip + & (i=1,...,n) (1.1)
Usually we assume that €1,...,&, are i.i.d. with E[g;] = 0, Var(g;) = o2
Notations:
e Y ={Y;i=1,...,n} is the vector of the response variables

o xU) = {zsj;1=1,...,n} is the vector of the jth predictor (covariable) (j =1,...,p)

e x; = {wxj;;j = 1,...p} is the vector of predictors for the ith observation

(t=1,...,n)
o B={p;j=1,...,p} is the vector of the unknown parameters
e ¢ ={g;;i=1,...,n} is the vector of the unknown random errors

e 7 is the sample size, p is the number of predictors

The parameters 3; and o2 are unknown and the errors &; are unobservable. On the
other hand, the response variables Y; and the predictors x;; have been observed.

Model in vector notation:

Yi=x"B+e  (i=1,...,n)
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Model in matrix form:

Y = X X B+ €

nx1 nxp px1 nxl1 (1.2)

where X is a (n x p)-matrix with rows x;T and columns x().
The first predictor variable is often a constant, i.e., x;; = 1 for all i. We then get an
intercept in the model.

Y = 01+ Bomio + ... + Bpxip + i

We typically assume that the sample size n is larger than the number of predictors
p, n > p, and moreover that the matrix X has full rank p, i.e., the p column vectors
xM ... x® are linearly independent.

1.2.1 Stochastic Models

The linear model in (1.1) involves some stochastic (random) components: the error terms
g; are random variables and hence the response variables Y; as well. The predictor vari-
ables z;; are here assumed to be non-random. In some applications, however it is more
appropriate to treat the predictor variables as random.

The stochastic nature of the error terms &; can be assigned to various sources: for
example, measurement errors or inability to capture all underlying non-systematic effects
which are then summarized by a random variable with expectation zero. The stochastic
modelling approach will allow to quantify uncertainty, to assign significance to various
components, e.g. significance of predictor variables in model (1.1), and to find a good
compromise between the size of a model and the ability to describe the data (see section

1.7).

The observed response in the data is always assumed to be realizations of the random
variables Y7,...,Y,; the x;;’s are non-random and equal to the observed predictors in the
data.

1.2.2 Examples

Two-sample model:

1 0
10
_ _| 10 _( m
0 1
0 1

Main questions: p; = ue? Quantitative difference between uy and uo?
From introductory courses we know that one could use the two-sample t-test or two-sample
Wilcoxon test.
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Regression through the origin: Y; = fz; +¢; (i=1,...n).

I
©

p=1, X=1. , B

Simple linear regression: Y; = 1 + fox; +¢; (i =1,...n).

11‘1
=9 X = 11’2 B(ﬁl)
P I R “\ &)
1 z,

Quadratic regression: Y; = 3 + Box; + 5395? +e (i=1,...n).

1z a2

1 9 x% 51
p= 37 X = - : ) B = 62

. . . 53

1z, 22

Note that the fitted function is quadratic in the x;’s but linear in the coefficients 3; and
therefore a special case of the linear model (1.1).

Regression with transformed predictor variables:
Y, =01+ 052 log(:cig) + B3 Sin(ﬂ'l‘ig) +&; (Z =1,... n)

1 log(z12) sin(mz13)
1 log(zaz) sin(mxes) b1
p= 3, X = . . ) ﬂ = ﬁ?
1 log(zpz) sin(mx,s)
Again, the model is linear in the coefficients 3; but nonlinear in the x;;’s.

In summary:

The model in (1.1) is called linear because it is linear in the coefficients (;.
The predictor (and also the response) variables can be transformed versions
of the original predictor and/or response variables.

1.2.3 Goals of a linear regression analysis

e A good “fit”. Fitting or estimating a (hyper-)plane over the predictor variables to
explain the response variables such that the errors are “small”. The standard tool
for this is the method of least squares (see section 1.3).

e Good parameter estimates. This is useful to describe the change of the response
when varying some predictor variable(s).

e Good prediction. This is useful to predict a new response as a function of new
predictor variables.
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e Uncertainties and significance for the three goals above. Confidence intervals
and statistical tests are useful tools for this goal.

e Development of a good model. In an interactive process, using methods for the
goals mentioned above, we may change parts of an initial model to come up with a
better model.

The first and third goal can become conflicting, see section 1.7.

1.3 Least Squares Method

We assume the linear model Y = X3 +e. We are looking for a “good” estimate of 3.
The least squares estimator 3 is defined as

B = argmin|[Y — X%, (1.3)
B
where ||-|| denotes the Euclidean norm in R".

1.3.1 The normal equations

The minimizer in (1.3) can be computed explicitly (assuming that X has rank p). Com-
puting partial derivatives of [[Y — X ﬁHQ with respect to 8 (p-dimensional gradient vector),
evaluated at 3, and setting them to zero yields

(—=2) XT(Y = XB8)=0  ((p x 1) — null-vector).
Thus, we get the normal equations
XTXB=XTY. (1.4)

These are p linear equations for the p unknowns (components of ,@)
Assuming that the matrix X has full rank p, the p x p matrix XTX is invertible, the
least squares estimator is unique and can be represented as

B=(XTX)1XTY.

This formula is useful for theoretical purposes. For numerical computation it is much more
stable to use the QR decomposition instead of inverting the matrix XTX. !
From the residuals 7; = Y; — x;3, the usual estimate for o is

n
1
~2 2
0 = E ;.
=1

n—p-

Note that the r;’s are estimates for ¢;’s; hence the estimator is plausible, up to the some-
what unusual factor 1/(n — p). It will be shown in section 1.4.1 that due to this factor,
E[6?] = 2.

'Let X = QR with orthogonal (n x p) matrix Q and upper (Right) triangular (p x p) R. Because of
XTX = RTQTQR = R™R, computing 3 only needs subsequent solution of two triangular systems: First
solve RTc = XTY for c, and then solve R3 = c.
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85 95 105 115
! ! ! |

number of births (CH) (in 1000)
75

65
1

30 35 40 45 50 55 60 65 70 75 80 85 90 95
year

Figure 1.1: The pill kink.

1.3.2 Assumptions for the Linear Model

We emphasize here that we do not make any assumptions on the predictor variables,
except that the matrix X has full rank p < n. In particular, the predictor variables can
be continuous or discrete (e.g. binary).

We need some assumptions so that fitting a linear model by least squares is reasonable
and that tests and confidence intervals (see 1.5) are approximately valid.

1. ’The linear regression equation is correct. ‘ This means: Elg;] = 0 for all i.

\V]

. ’All x;’s are exact. | This means that we can observe them perfectly.

3. ’The variance of the errors is constant (“homoscedasticity”). ‘ This means:
Var(g;) = o2 for all 4.

B

. ’The errors are uncorrelated. ‘ This means: Cov(e;,e5) = 0 for all @ # j.

ot

. ’The errors {¢;; i =1,...,n} are jointly normally distributed.‘ This implies
that also {Y;;i =1,...,n} are jointly normally distributed.

In case of violations of item 3, we can use weighted least squares instead of least
squares. Similarly, if item 4 is violated, we can use generalized least squares. If the
normality assumption in 5 does not hold, we can use robust methods instead of least
squares. If assumption 2 fails to be true, we need corrections known from “errors in
variables” methods. If the crucial assumption in 1 fails, we need other models than the
linear model.

The following example shows violations of assumption 1 and 4. The response variable
is the annual number of births in Switzerland since 1930, and the predictor variable is the
time (year).

We see in Figure 1.1 that the data can be approximately described by a linear relation
until the “pill kink” in 1964. We also see that the errors seem to be correlated: they
are all positive or negative during periods of 10 — 20 years. Finally, the linear model is
not representative after the pill kink in 1964. In general, it is dangerous to use a fitted
model for extrapolation where no predictor variables have been observed (for example: if
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E[Y] %

Figure 1.2: The residual vector r is orthogonal to X.

we would have fitted the linear model in 1964 for prediction of number of births in the
future until 2005).

1.3.3 Geometrical Interpretation

The response variable Y is a vector in R™. Also, X3 describes a p-dimensional subspace
X in R™ (through the origin) when varying 3 € RP (assuming that X has full rank p).
The least squares estimator ,Z‘i\ is then such that X 3 is closest to Y with respect to the
Euclidean distance. But this means geometrically that

X ,@ is the orthogonal projection of Y onto X.

We denote the (vector of ) fitted values by
Y = X5.

They can be viewed as an estimate of X 3.
The (vector of) residuals is defined by

r=Y-Y.

Geometrically, it is evident that the residuals are orthogonal to X, because Y is the
orthogonal projection of Y onto X. This means that

r’xW) =0foralj=1,...,p,

where xU) is the jth column of X.
We can formally see why the map
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is an orthogonal projection. Since Y = XB = X(XTX)"!XTY, the map can be repre-
sented by the matrix
P=X(XTX)'xT. (1.5)

It is evident that P is symmetric (PT = P) and P is idem-potent (P2 = P). Furthermore

S° P = tr(P) = tr(X(XTX) LX) = tr((XTX) LXTX) = tr(Typ) =

But these 3 properties characterize that P is an orthogonal projection from R™ onto a
p-dimensional subspace, here X.
The residuals r can be represented as

:(I_P)Y7

where I — P is now also an orthogonal projection onto the orthogonal complement of X',
X+ = R"\ X, which is (n — p)-dimensional. In particular, the residuals are elements of
Xt

1.3.4 Don’t do many regressions on single variables!

In general, it is not appropriate to replace multiple regression by many single regressions
(on single predictor variables). The following (synthetic) example should help to demon-
strate this point.

Consider two predictor variables (1), 2(2) and a response variable Y with the values

2D 0123 012 3
2@ -1 012 1 2 3 4
Y | 1 234 -1 01 2

Multiple regression yields the least squares solution which describes the data points exactly
Y; = Y; = 221 — x40 for all i (62 =0). (1.6)

The coefficients 2 and -1, respectively, describe how y is changing when varying either (%)
or z® and keeping the other predictor variable constant. In particular, we see that Y
decreases when z(?) increases.

On the other hand, if we do a simple regression of ¥ onto (2 (while ignoring the values
of (1); and thus, we do not keep them constant), we obtain the least squares estimate

Y; = 11'12 + 2 for all (62 =1.72).
9 3
This least squares regression line describes how Y changes when varying z(2) while ignoring
W) In particular, Y increases when z(?) increases, in contrast to multiple regression!

The reason for this phenomenon is that z(!) and 23 are strongly correlated: if z(?)
increases, then also 2(!) increases. Note that in the multiple regression solution, z(!) has a
larger coefficient in absolute value than z(2) and hence, an increase in z(!) has a stronger
influence for changing y than 2. The correlation among the predictors in general makes
also the interpretation of the regression coefficients more subtle: in the current setting,
the coefficient 5 quantifies the influence of (1) on Y after having subtracted the effect
of 2@ on Y, see also section 1.5.
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Summarizing:

Simple least squares regressions on single predictor variables yield the multiple
regression least squares solution, only if the predictor variables are orthogonal.

In general, multiple regression is the appropriate tool to include effects of
more than one predictor variables simultaneously.

The equivalence in case of orthogonal predictors is easy to see algebraically. Or-
thogonality of predictors means XTX = diag(>. " 23, ...,> x?p) and hence the least
squares estimator

n n
> ;
i=1 i=1
ie., Bj depends only on the response variable Y; and the jth predictor variable x;;.

1.3.5 Computer-Output from R: Part I

We show here parts of the computer output (from R ) when fitting a linear model to data
about quality of asphalt.

y = LOGRUT : log("rate of rutting") = log(change of rut depth in inches
per million wheel passes)
["rut" := ‘Wagenspur’, ausgefahrenes Geleise]

x1 = LOGVISC : log(viscosity of asphalt)

x2 = ASPH : percentage of asphalt in surface course

x3 = BASE : percentage of asphalt in base  course

x4 = RUN : ’0/1’ indicator for two sets of runs.

x5 = FINES : 10* percentage of fines in surface course

x6 = VOIDS : percentage of voids in surface course

The following table shows the least squares estimates Bj (j=1,...,6), some empirical

quantiles of the residuals r; (i = 1,...,n), the estimated standard deviation of the errors?

V62 and the so-called degrees of freedom n — p.

Call:
Im(formula = LOGRUT ~ . , data = asphaltl)
Residuals:

Min 1Q Median 3Q Max

-0.48348 -0.14374 -0.01198 0.15523 0.39652

Coefficients:
Estimate
(Intercept) -5.781239
LOGVISC -0.513325
ASPH 1.146898
BASE 0.232809
RUN -0.618893

2 The term “residual standard error” is a misnomer with a long tradition, since “standard error” usually

——

means 1/ Var (é) for an estimated parameter 6.
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FINES 0.004343
VOIDS 0.316648

Residual standard error: 0.2604 on 24 degrees of freedom

1.4 Properties of Least Squares Estimates

As an introductory remark, we point out that the least squares estimates are random
variables: for new data from the same data-generating mechanism, the data would look
differently every time and hence also the least squares estimates. Figure 1.3 displays three
least squares regression lines which are based on three different realizations from the same
data-generating model (i.e., three simulations from a model). We see that the estimates
are varying: they are random themselves!

true line
—— - least squares line

Figure 1.3: Three least squares estimated regression lines for three different data realiza-
tions from the same model.

1.4.1 Moments of least squares estimates

We assume here the usual linear model
Y = XB+¢, Ele] =0, Cov(e) = EleeT] = 02 L,xn. (1.7)

This means that assumption 1.-4. from section 1.3.2 are satisfied.
It can then be shown that:

(i) E[B] = B: that is, 8 is unbiased
(i) E[Y] = E[Y] = X8 which follows from (i). Moreover, E[r] = 0.
)
v)

(iii) Cov(B ) o (XTX)!
(iv) Cov(Y) = o2P, Cov(r) = o2(I — P)

The residuals (which are estimates of the unknown errors ¢;) are also having expecta-
tion zero but they are not uncorrelated:

Var(r;) = o*(1 — Py).
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From this, we obtain

n

ED) vl =) E[f] =) Var(r) =0’ (1 P;) =0*(n—tx(P)) = *(n - p).
i=1 i=1 =1 i=1

Therefore, E[62] = E[>_I", r?/(n — p)] = o2 is unbiased.

i=1"1

1.4.2 Distribution of least squares estimates assuming Gaussian errors

We assume the linear model as in (1.7) but require in addition that e1,...,&, iid. ~
N(0,0?). Tt can then be shown that:

(i) B~ Np(B,03(XTX)™)
(i) Y ~ Np(XB,0%2P), r~N,(0,0%I—P))

(iii) 62 ~ ;22
The normality assumptions of the errors ¢; is often not (approximately) fulfilled in
practice. We can then rely on the central limit theorem which implies that for large
sample size n, the properties (i)-(iii) above are still approximately true. This is the usual
justification in practice to use these properties for constructing confidence intervals and
tests for the linear model parameters. However, it is often much better to use robust
methods in case of non-Gaussian errors which we are not discussing here.

1.5 Tests and Confidence Regions

We assume the linear model as in (1.7) with e1,...,e, iid. ~ N(0,02) (or with &;’s
ii.d. and “large” sample size n). As we have seen above, the parameter estimates ,@ are
normally distributed.

If we are interested whether the jth predictor variable is relevant, we can test the
null-hypothesis Hy ; : 3; = 0 against the alternative Hy ; : 3; # 0. We can then easily
derive from the normal distribution of Bj that

Ll ~ N(0,1) under the null-hypothesis Hy ;.
2 -
o*(XTX);;
Since ¢ is unknown, this quantity is not useful, but if we substitute it with the estimate
52 we obtain the so-called t-test statistic
T; = B ~ t,_p under the null-hypothesis Hy j, (1.8)
G2(XTX) !

which has a slightly different distribution than standard Normal A/(0,1). The corre-
sponding test is then called the t-test. In practice, we can thus quantify the relevance of
individual predictor variables by looking at the size of the test-statistics Tj (j = 1,...,p)
or at the corresponding P-values which may be more informative.

The problem by looking at individual tests Hy j is (besides the multiple testing problem
in general) that it can happen that all individual tests do not reject the null-hypotheses
(say at the 5% significance level) although it is true that some predictor variables have a
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significant effect. This “paradox” can occur because of correlation among the predictor
variables.

An individual ¢-test for Hp ; should be interpreted as quantifying the effect of
the jth predictor variable after having subtracted the linear effect of all
other predictor variables on Y.

To test whether there exists any effect from the predictor variables, we can look at the
simultaneous null-hypothesis Hy : (B2 = ... = 8, = 0 versus the alternative Hy : (3; #
0 for at least one j € {2,...,p}; we assume here that the first predictor variable is the
constant X;; = 1 (there are p — 1 (non-trivial) predictor variables). Such a test can be
developed with an analysis of variance (anova) decomposition which takes a simple form
for this special case:

2

Iy =Y =Y =Y+ [y - ¥

which decomposes the total squared error Y —Y around the mean Y = n~! YY1

as a sum of the squared error due to the regression Y —Y (the amount that the fitted
values vary around the global arithmetic mean) and the squared residual errorr =Y — Y.
(The equality can be seen most easily from a geometrical point of view: the residuals r
are orthogonal to X and hence to Y - Y). Such a decomposition is usually summarized

by an ANOVA table (ANalysis Of VAriance).

sum of squares degrees of freedom mean square E [mean square]
~ _ ~ _ _wI[¥v12
regression Y — Y| p—1 1Y =Y|%/(p—1) 02+%
error Y - Y| n—p 1Y = Y|?/(n—p) o’
total around
global mean Y — Y| n—1 - -

In case of the global null-hypothesis, there is no effect of any predictor variable and
hence E[Y] = const. = E[Y]: therefore, the expected mean square equals o under Hy.
The idea is now to divide the mean square by the estimate 62 to obtain a scale-free
quantity: this leads to the so-called F-statistic

b IV =YP/0-1)
1Y —¥[2/(n—p)

Fy,_1,,—p under the global null-hypothesis Hy.

This test is called the F-test (it is one among several other F-tests in regression).
Besides performing a global F-test to quantify the statistical significance of the predic-

tor variables, we often want to describe the goodness of fit of the linear model for explaining

the data. A meaningful quantity is the coefficient of determination, abbreviated by R?,

s Y=Y
Y — Y]
which is the proportion of the total variation of Y around Y which is explained by the

regression (see the ANOVA decomposition and table above).
Similarly to the ¢-tests as in (1.8), one can derive confidence intervals for the unknown

parameters (3;:
ﬂj + \/ &2(XTX)J_]1 ’ tnfp;lfa/Z

is a two-sided confidence interval which covers the true (3; with probability 1 — «; here,
tn—pi1—a/2 denotes the 1 — /2 quantile of a ¢, distribution.
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1.5.1 Computer-Output from R : Part 11

We consider again the dataset from section 1.3.5. We now give the complete list of sum-
mary statistics from a linear model fit to the data.

Call:
lm(formula = LOGRUT ~ ., data = asphaltl)

Residuals:
Min 1Q Median 3Q Max
-0.48348 -0.14374 -0.01198 0.15523 0.39652

Coefficients:

Estimate Std. Error t value Pr(>lt|)
(Intercept) -5.781239 2.459179 -2.351 0.027280 x*
LOGVISC -0.513325 0.073056 -7.027 2.90e-07 **x
ASPH 1.146898 0.265572 4.319 0.000235 ***
BASE 0.232809 0.326528 0.713 0.482731
RUN -0.618893 0.294384 -2.102 0.046199 x*
FINES 0.004343 0.007881 0.551 0.586700
VOIDS 0.316648 0.110329 2.870 0.008433 **

Signif. codes: O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

Residual standard error: 0.2604 on 24 degrees of freedom
Multiple R-Squared: 0.9722, Adjusted R-squared: 0.9653
F-statistic: 140.1 on 6 and 24 DF, p-value: < 2.2e-16

The table displays the standard errors of the estimates @(BJ) = 4/0%(XTX )j_jl, the
t-test statistics for the null-hypotheses Hp; : (3; = 0 and their corresponding two-sided
P-values with some abbreviation about strength of significance. Moreover, the R? and
adjusted R? are given and finally also the F-test statistic for the null-hypothesis Hy :
B2 = ...= [, =0 (with the degrees of freedom) and its corresponding P-value.

1.6 Analysis of residuals and checking of model assumptions

The residuals r; = Y; — }A/Z' can serve as an approximation of the unobservable error term
g; and for checking whether the linear model is appropriate.

1.6.1 The Tukey-Anscombe Plot

The Tukey-Anscombe is a graphical tool: we plot the residuals r; (on the y-axis) versus
the fitted values Y; (on the z-axis). A reason to plot against the fitted values Y; is that
the sample correlation between r; and f/; is always zero.

In the ideal case, the points in the Tukey-Anscombe plot “fluctuate randomly” around
the horizontal line through zero: see also Figure 1.4. An often encountered deviation is
non-constant variability of the residuals, i.e., an indication that the variance of ¢; increases
with the response variable Y;: this is shown in Figure 1.5 a)—c). If the Tukey-Anscombe
plot shows a trend, there is some evidence that the linear model assumption is not correct
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(the expectation of the error is not zero which indicates a systematic error): Figure 1.5d)
is a typical example.

r .

Figure 1.5: a) linear increase of standard deviation, b) nonlinear increase of standard
deviation, c) 2 groups with different variances, d) missing quadratic term in the model.

In case where the Tukey-Anscombe plot exhibits a systematic relation of the variability
on the fitted values Y;, we should either transform the response variable or perform a
weighted regression (see Section 1.6.4). If the standard deviation grows linearly with the
fitted values (as in Figure 1.5a)), the log-transform Y +— log(Y") stabilizes the variance; if
the standard deviation grows as the square root with the values Y; (as in Figure 1.5b)),
the square root transformation ¥ — VY stabilizes the variance.

1.6.2 The Normal Plot

Assumptions for the distribution of random variables can be graphically checked with the
QQ (quantile-quantile) plot. In the special case of checking for the normal distribution,
the QQ plot is also referred to as a normal plot.

In the linear model application, we plot the empirical quantiles of the residuals (on
the y axis) versus the theoretical quantiles of a A/(0,1) distribution (on the = axis). If the
residuals would be normally distributed with expectation p and variance o2, the normal
plot would exhibit an approximate straight line with intercept u and slope o. Figures
1.6 and 1.7 show some normal plots with exactly normally and non-normally distributed
observations.
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Figure 1.6: QQ-plots for i.i.d. normally distributed random variables. Two plots for each
sample size n equal to a) 20, b) 100 and ¢) 1000.
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Figure 1.7: QQ-plots for a) long-tailed distribution, b) skewed distribution, c) dataset
with outlier.

1.6.3 Plot for detecting serial correlation

For checking independence of the errors we plot the residuals r; versus the observation
number ¢ (or if available, the time ¢; of recording the ith observation). If the residuals
vary randomly around the zero line, there are no indications for serial correlations among
the errors g;. On the other hand, if neighboring (with respect to the z-axis) residuals look
similar, the independence assumption for the errors seems violated.

1.6.4 Generalized least squares and weighted regression

In a more general situation, the errors are correlated with known covariance matrix,
Y =XB+e, with € ~N,(0,3).

When X is known (and also in the case where 3 = ¢2G with unknown ¢2), this case can
be transformed to the i.i.d. one, using a “square root” C' such that 3 = CCT (defined,
e.g., via Cholesky factorization ¥ = LLT, L is uniquely determined lower triangular):
IfY := C'Y and X := C7'X, we have Y = X3 + &, where & ~ N(0,1). This
leads to the generalized least squares solution 8 = (XTX 1 X)"1 XT3 ~1Y with Cov(B) =
(XTREX)
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A special case where X is diagonal, 3 = o2 diag(21, 22, . . ., 2,) (With trivial inverse) is
the weighted least squares problem mingy ;- w;(¥; — x;73)?, with weights w; = 1/z;.

1.7 Model Selection

We assume the linear model

p

j=1
where €1,...,¢&, i.i.d., E[g;] =0, Var(g;) = o2.

Problem: Which of the predictor variables should be used in the linear model?
It may be that not all of the p predictor variables are relevant. In addition, every coeflicient
has to be estimated and thus is afflicted with variability: the individual variabilities for
each coefficient sum up and the variability of the estimated hyper-plane increases
the more predictors are entered into the model, whether they are relevant or
not. The aim is often to look for the optimal or best - not the true - model.

What we just explained in words can be formalized a bit more. Suppose we are looking
for optimizing the prediction

q
)~ Bj,wij,
r=1

which includes ¢ predictor variables with indices ji,...,j; € {1,...,p}. The average mean
squared error of this prediction is

n q
n~t Y El(m(x:) = Y Bjij,)?]
=1 r=1
n q n q
= T ED B - me)t T Ve (Y ). (19

N

where m(-) denotes the regression function in the full model with all the predictor variables.
It is plausible that the systematic error (squared bias) n=* 327" (E[327, B, @i5.] —m(x;))?
decreases as the number of predictor variables ¢ increases (i.e., with respect to bias, we have
nothing to lose by using as many predictors as we can), but the variance term increases
linearly in the number of predictors ¢ (the variance term equals ¢/n - o2 which is not too
difficult to derive). This is the so-called bias-variance trade-off which is present in very
many other situations and applications in statistics. Finding the best model thus means to
optimize the bias-variance trade-off: this is sometimes also referred to as “regularization”
(for avoiding a too complex model).

1.7.1 Mallows C, statistic

The mean squared error in (1.9) is unknown: we do not know the magnitude of the bias
term but fortunately, we can estimate the mean squared error.

Denote by SSE(M) the residual sum of squares in a model M: it is overly opti-
mistic and not a good measure to estimate the mean squared error in (1.9). For example,
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SSE(M) becomes smaller the bigger the model M and the biggest model under consid-
eration has the lowest SSE (which generally contradicts the equation in (1.9)).

For any (sub-)model M which involves some (or all) of the predictor variables, the
mean squared error in (1.9) can be estimated by

n"1SSE(M) — 6% + 262 | M|/n,

where 62 is the error variance estimate in the full model and SSE(M) is the residual sum
of squares in the submodel M. (A justification can be found in the literature). Thus, in
order to estimate the best model, we could search for the sub-model M minimizing the
above quantity. Since 62 and n are constants with respect to submodels M, we can also
consider the well-known C,, statistic

_ SSE(M)

- 2|M

Cp(M)
and search for the sub-model M minimizing the C), statistic.
Other popular criteria to estimate the predictive potential of an estimated model are
Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC).

Searching for the best model with respect to C,

If the full model has p predictor variables, there are 2P — 1 sub-models (every predictor
can be in or out but we exclude the sub-model M which corresponds to the empty set).

Therefore, an exhaustive search for the sub-model M minimizing the C), statistic is
only feasible if p is less than say 16 (26 — 1 = 65’535 which is already fairly large). If p is
“large”, we can proceed with stepwise algorithms.

Forward selection.
1. Start with the smallest model My (location model) as the current model.
2. Include the predictor variable to the current model which reduces the residual sum of
squares most.
3. Continue step 2. until all predictor variables have been chosen or until a large number
of predictor variables has been selected. This produces a sequence of sub-models My C
MiCMyC...
4. Choose the model in the sequence My € M; € My C ... which has smallest C),
statistic.

Backward selection.
1. Start with the full model Mg as the current model.
2. Exclude the predictor variable from the current model which increases the residual sum
of squares the least.
3. Continue step 2. until all predictor variables have been deleted (or a large number of
predictor variables). This produces a sequence of sub-models My D M; D M3y D ...
4. Choose the model in the sequence My O M; O My DO ... which has smallest C),
statistic.

Backward selection is typically a bit better than forward selection but it is computa-
tionally more expensive. Also, in case where p > n, we don’t want to fit the full model
and forward selection is an appropriate way to proceed.



	Multiple Linear Regression
	Introduction
	The Linear Model
	Stochastic Models
	Examples
	Goals of a linear regression analysis

	Least Squares Method
	The normal equations
	Assumptions for the Linear Model
	Geometrical Interpretation
	Don't do many regressions on single variables!
	Computer-Output from R: Part I

	Properties of Least Squares Estimates
	Moments of least squares estimates
	Distribution of least squares estimates assuming Gaussian errors

	Tests and Confidence Regions
	Computer-Output from R: Part II

	Analysis of residuals and checking of model assumptions
	The Tukey-Anscombe Plot
	The Normal Plot
	Plot for detecting serial correlation
	Generalized least squares and weighted regression

	Model Selection
	Mallows Cp statistic


	Nonparametric Density Estimation
	Introduction
	Estimation of a density
	Histogram
	Kernel estimator

	The role of the bandwidth
	Variable bandwidths: k nearest neighbors
	The bias-variance trade-off
	Asymptotic bias and variance
	Estimating the bandwidth

	Higher dimensions
	The curse of dimensionality


	Nonparametric Regression
	Introduction
	The kernel regression estimator
	The role of the bandwidth
	Inference for the underlying regression curve

	Local polynomial nonparametric regression estimator
	Smoothing splines and penalized regression
	Penalized sum of squares
	The smoothing spline solution
	Shrinking towards zero
	Relation to equivalent kernels


	Cross-Validation
	Introduction
	Training and Test Set
	Constructing training-, test-data and cross-validation
	Leave-one-out cross-validation
	K-fold Cross-Validation
	Random divisions into test- and training-data

	Properties of different CV-schemes
	Leave-one-out CV
	Leave-d-out CV
	Versions with computational shortcuts

	Computational shortcut for some linear fitting operators

	Bootstrap
	Introduction
	Efron's nonparametric bootstrap
	The bootstrap algorithm
	The bootstrap distribution
	Bootstrap confidence interval: a first approach
	Bootstrap estimate of the generalization error

	Double bootstrap
	Model-based bootstrap
	Parametric bootstrap
	Model structures beyond i.i.d. and the parametric bootstrap
	The model-based bootstrap for regression


	Classification
	Introduction
	The Bayes classifier
	The view of discriminant analysis
	Linear discriminant analysis
	Quadratic discriminant analysis

	The view of logistic regression
	Binary classification
	Multiclass case


	Flexible regression and classification methods
	Introduction
	Additive models
	Backfitting for additive regression models
	Additive model fitting in R

	MARS
	Hierarchical interactions and constraints
	MARS in R

	Neural Networks
	Fitting neural networks in R

	Projection pursuit regression
	Projection pursuit regression in R

	Classification and Regression Trees (CART)
	Tree structured estimation and tree representation
	Tree-structured search algorithm and tree interpretation
	Pros and cons of trees
	CART in R

	Variable Selection, Regularization, Ridging and the Lasso
	Introduction
	Ridge Regression
	The Lasso


	Bagging and Boosting
	Introduction
	Bagging
	The bagging algorithm
	Bagging for trees
	Subagging

	Boosting
	L2Boosting



