Regularization and variable selection via the elastic net

Zou and Hastie (2003): J.R. Statist. Soc. B. 301–320

For any fixed non-negative $\lambda 1$ and $\lambda 2$, we define the naive elastic net criterion

$$L(\boldsymbol{\lambda}_{1},\boldsymbol{\lambda}_{2},\boldsymbol{\beta}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{2} + \boldsymbol{\lambda}_{2}\|\boldsymbol{\beta}\|^{2} + \boldsymbol{\lambda}_{1}\|\boldsymbol{\beta}\|_{1}$$
(3)

The naive elastic net estimator $\hat{\beta}$ is the minimizer of (3), $\beta = \arg \min_{\beta} L(\lambda_1, \lambda_2, \beta)$. This procedure can be viewed as a penalized least squares method.

Let

 $\alpha = \lambda_2 / (\lambda_1 + \lambda_2);$

then solving $\hat{\beta}$ in equation (3) is equivalent to the optimization problem

$$\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2, \quad subject \, t. \quad (1 - \alpha) |\boldsymbol{\beta}|_1 + \alpha |\boldsymbol{\beta}|^2 \le t \quad for some \ t$$
(5)

We call the function $(1-\alpha) |\beta| 1 + \alpha |\beta|^2$ the *elastic net penalty*, which is a convex combination of the lasso and ridge penalty.

When $\alpha = 1$, the na "ive elastic net becomes simple ridge regression."

Here, we consider only $\alpha < 1$. For all $\alpha \in [0, 1)$, the elastic net penalty function is singular (without first derivative) at 0 and it is strictly convex for all $\alpha > 0$, thus having the characteristics of both the lasso and ridge regression. Note that the lasso penalty ($\alpha = 0$) is convex but not strictly convex.

These arguments can be seen clearly from Fig. 1: H. Zou and T. Hastie 304

Fig. 1. Two-dimensional contour plots (level 1) (...., shape of the ridge penalty;, contour of the lasso penalty; — , contour of the elastic net penalty with $\alpha = 0.5$): we see that singularities at the vertices and the edges are strictly convex; the strength of convexity varies with α

The Adaptive Lasso and its Oracle Properties

Hui Zou (2006)

Let us consider the weighted lasso

$$argmin_{\beta} \|y - \sum_{j=1}^{p} \beta_{j} \boldsymbol{x}_{j}\|^{2} + \lambda \cdot \sum_{j=1}^{p} w_{j} |\beta_{j}|$$

where w is a known weights vector. ...show that if the weights are datadependent and cleverly chosen, the weighted lasso can possess the oracle properties. The new methodology is called the *adaptive lasso*.

We now define the adaptive lasso. Suppose $\hat{\beta}$ is a root-n consistent estimator to β_{*} . For example, we can use $\widehat{\beta_{als}}$.

Pick a $\gamma > 0$, and define the weight vector $\hat{w} = \frac{1}{\hat{B}^{\gamma}}$.

The *adaptive lasso estimates* $\widehat{\beta}_{(n)}$ are given by

$$\hat{\boldsymbol{\beta}}_{(n)} = \operatorname{argmin}_{\boldsymbol{\beta}} \left\| \boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{\beta}_{j} \boldsymbol{x}_{j} \right\|^{2} + \lambda \sum_{j=1}^{p} \hat{\boldsymbol{w}}_{j} \left| \boldsymbol{\beta}_{j} \right| \quad .$$
(6)

It is worth emphasizing that (6) is a convex optimization problem, thus it does not suffer from the multiple local minimal issue and its global minimizer can be efficiently solved.