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Regularization and variable selection via the elastic net
Zou and Hastie (2003), J.R. Statist. Soc. B, 301-320

For any fixed non-negative A1 and A2 , we define the naive elastic net criterion
L(A,,4,.8) = |y-XB|*+2,|B]°+2, 8], (3)

The naive elastic net estimator ﬁ is the minimizer of (3), B=argmin, L(A,A,,B) .
This procedure can be viewed as a penalized least squares method.

Let a=2A,/2,+2,);
then solving B in equation (3) is equivalent to the optimization problem

2
’

B = argming |y - xB| subjectt. (1—-a)|B|,+a|B|> <t forsome t (5)

We call the function (1—a) |B|1 + «a|B|? the elastic net penalty, which is a convex
combination of the lasso and ridge penalty.

When a= 1, the na“ive elastic net becomes simple ridge regression.

Here, we consider only a< 1. Forall a € [0, 1), the elastic net penalty function is singular
(without first derivative) at 0 and it is strictly convex for all a> 0, thus having the
characteristics of both the lasso and ridge regression. Note that the lasso penalty (a= 0) is
convex but not strictly convex.

These arguments can be seen clearly from Fig. 1:
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Fig. 1. Two-dimensional contour plots (level 1) {------ , shape of the ridge penalty; ------- . contour of the
lasso penalty; , contour of the elastic net penalty with «= 0.5): we see that singularities at the vertices

and the edges are strictly convex; the strength of convexity varies with o
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The Adaptive Lasso and its Oracle Properties
Hui Zou (2006)

Let us consider the weighted lasso
P ) p
argming |y=22B,x | + A2 w,|B]
j=1 j=1

where w is a known weights vector. ...show that if the weights are data-
dependent and cleverly chosen, the weighted lasso can possess the oracle
properties. The new methodology is called the adaptive lasso.

We now define the adaptive lasso. Suppose B is a root-n consistent estimator

to B«. For example, we can use

ols "

.1
Pick a y>0 , and define the weight vector w==

BV

The adaptive lasso estimates ﬁ/(\n) are given by

A~ p 2 14
i=1 i=1

It is worth emphasizing that (6) is a convex optimization problem, thus it does
not suffer from the multiple local minimal issue and its global minimizer can be
efficiently solved.



