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Exercise Series 8

1. Consider again the ozone dataset. As in exercise 8 take the log of the response and remove
the outlier.

Now we focus on projection pursuit regression (PPR). We want to compare models
with different number of ridge functions and different smoothers. Use leave-one-out cross-
validation to compare models.

a) Choose three different smoothers (argument sm.method). The default is supsmu, Fried-
mans “super smoother”. The other two possibilities are spline which uses splines with
a specified (equivalent) degree of freedom for each ridge function and gcvspline which
chooses the smoothness by GCV.

For each of these smoothers vary the numbers of ridge functions (nterms), from 1 to
8. If your computer power allows you can also try different degrees of freedom (df) for
spline, from 1 to 6.

Use max.terms to get better results, max.terms=nterms+3. The following description
is taken from the help-file of ppr:

The algorithm first adds up to ’max.terms’ ridge terms one at a time; it will use less if
it is unable to find a term to add that makes sufficient difference. It then removes the
least “important” term at each step until ’nterms’ terms are left.

R-Hints:

## Recall d.ozone.e denotes the edited ozone data and

## iy is the index of the response logupo3.

## The first argument is a *function*. "..." are arguments which are passed

## to fitfn. Do *not* replace these dots!

cv <- function(fitfn, ...){

ssr <- 0

for(j in 1:nrow(d.ozone.e)){

print(j)

train <- d.ozone.e[-j,]

test <- d.ozone.e[j,]

fit <- fitfn(x = train[,-iy], y = train[,iy], ...)

ssr <- ssr + (test[iy] - predict(fit, test[-iy]))^2

}

ssr

}

## Example to call simultaneously for different values of nterms:

cv.sm <- numeric(length=8)

for(i in 1:8){ ## print(i)

cv.sm[i] <- cv(ppr, nterms = i, maxt.terms = i+3)}

b) Choose the best model from a) and visualize the ridge functions as in the manuscript
on page 67.
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c) Interpret the α-matrix ($alpha) for your model. Because the predictors are on different

scales (check apply(d.ozone.e,2,sd)), the interpretation is not straight forward. To
correct the scale you can multiply each row of the α-matrix with the standard deviation
of the corresponding predictor and rescale the columns to unit length. You can use
round() to get a better overview. If you have another model which performs nearly as
well as the best but has a much nicer interpretation you may want to prefer it to the
best model.

d) Compare your PPR-model to MARS with an interaction degree of 2. You can use the
cv-function from above: cv(mars, degree = 2).

2. In this exercise we are going to explore the dataset vehicle.dat which can be found
at "http://stat.ethz.ch/Teaching/Datasets/NDK/vehicle.dat". The dataset contains
846 observations of 19 variables. The aim is to classify the response (which is named Class)
into four different car types (bus,van,saab,opel) by means of 18 predictors such as compact-
ness, some information about the car axes and certain length ratios of the cars’ silhouettes.

We are going to use two competing classification methods to fulfill this task, namely CART-
trees with cost-complexity-optimized size and neural networks with variable number of hidden
units.

For CART the optimal tree size can be found automatically using the methods from package
rpart whereas for neural networks we have to find the optimal number of hidden units
ourselves by performing a 10fold inner cross-validation. To access the methods dealing with
neural networks you need to load the package nnet.

Packages: rpart and nnet

a) First of all, generate a classification tree using the methods from rpart. Set the options
cp = 0 and minsplit = 30 such that the resulting tree becomes too large and overfits
the data. To visualize the tree properly you have to make a suitable choice for the
parameters of plot and text. For details look at ?plot.rpart and ?text.rpart. Try
to interpret the tree. Use set.seed(100) for reproducibility.

R-Hints:

library(rpart)

t.formula <- Class ~.

r.rp <- rpart(t.formula,data=???,control=rpart.control(cp=0.0,minsplit=30))

plot(r.rp,???)

text(r.rp,???)

b) Now it comes to pruning the tree from part a). We let rpart perform a cost-complexity-
analysis to find an optimal cp-value by cross-validating a sequence of subtrees of the
tree in a). Read off the optimal cp from the cost-complexity-table (optimality is to be
understood according to the one standard-error rule), visualize the pruned tree with the
optimal cp and finally calculate its misclassification rate.

R-Hints:

# to access the cost-complexity table use:

printcp(r.rp)

# to plot classification error (relative to root tree) vs. subtree size

# (dotted line represents one standard error limit) use:

plotcp(r.rp)

# to prune the tree use method "prune.rpart":

rp.pr <- prune.rpart(r.rp,cp = ???)

# for visualization use "plot" and "text" again:
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# for misclassification rate look at:

?residuals.rpart

c) Next we want to fit a neural network with variable number of units. To prevent overfit
and speed up the optimization process neural networks can be penalized by the sum of
squares of the weights ωi. The regulating proportionality factor is called decay, because
a high decay-value obviously shrinks the weights. Such a shrinkage only makes sense if
the predictors are scaled to the same order of magnitude (usually to have mean 0 and
standard deviation 1). Therefore whenever using the decay-option you should scale your
data first. We have already performed for you a search for the optimal decay-parameter
by an inner cross-validation and found dec.opt = 0.0045. It’s left to you to search
for the optimal number of hidden layers size.opt. Write a function that performs a
10fold inner cross-validation to find size.opt. The maximal size you should consider
is size = 10. Bear in mind that nnet chooses random starting values. This means
that all your nnet-fits should be averaged over, say, nreps = 10 realizations. Finally,
calculate the misclassification rate for the optimal nnet.

R-Hints:

# to scale a data frame look at:

?scale

# always use "trace=FALSE" and optimal decay "decay=dec.opt":

learn <- nnet(Class ~.,data = ???, trace = FALSE, size = ???, decay=dec.opt,...)

# as a prediction result for nnet you get the probabilities for the

# four different factors. Averaging over starting values can be done

# as follows (can be used inside your CV-code):

res <- matrix(0,nrow(data),length(levels(Class)))

for(rep in 1: nreps){

learn <- nnet(Class ~., data = ???, maxit = 500, trace = FALSE, ...)

res[???] <- res[???] + predict(learn, data[???])

}

# number of misclassifications:

sum(as.numeric(Class) != max.col(res/nreps))

d) Next try to illustrate the optimal CART and nnet-fits on a two dimensional cross-
section. To do that we choose the two most selective variables according to the pruned
CART tree from b) and set all other predictors to their mean values. On a 2D-grid we
plot the classification decision boundary lines for the optimal CART tree and for a few
realizations of the optimal nnet and their average as well. You can use the functions
plt, plt.bdy and b1 (below).

Try to understand what those functions can do for you (t.ds and t.dsnet stand for
the vehicle and scaled vehicle data respecively) and then invoke them correctly with
the correct arguments. The resulting plots might look a bit strange, this is because
we are only looking at the projections of the high-dimensional vehicle-data onto a
two-dimensional cross-section. Such a plot has to be interpreted with care.

##plot factors

plt <- function(dat,xcol,ycol,lcol,...)

{

plot(dat[,xcol],dat[,ycol],type="n",xlab=names(dat)[xcol],ylab=names(dat)[ycol],

main = "Cross-Section Classification Plot",...)

chars <- c("b","o","s","v")

for(l in 1:length(levels(dat[,lcol])))

{

set <- dat[,lcol] == levels(dat[,lcol])[l]

text(dat[set,xcol],dat[set,ycol],chars[l],col = 2+l)
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}

}

##plot decision lines

b1 <- function(Z,...)

{

for(i in 1: length(levels(dat[,lcol])))

{

z <- Z[,i] - apply(Z[,-i],1,max)

c <- contourLines(x,y,matrix(z,gr.len),levels = 0.0)

if(length(c) !=0) points(c[[1]]$x,c[[1]]$y,type="l",...)

}

}

#compute 2D-nnet-classification-decision lines for CART and nnet

plt.bdy <- function(formula,xcol,ycol,lcol,size=size.opt,decay=dec.opt,

nrep=10,gr.len=100,...)

{

mult.fig(2,main="Cross Section-Classification-Plots for CART and nnet")

plt(t.ds,xcol,ycol,lcol,xlim=c(0,18))

x.rg <- range(t.ds[,xcol])

y.rg <- range(t.ds[,ycol])

x <- seq(x.rg[1],x.rg[2],length=gr.len)

y <- seq(y.rg[1],y.rg[2],length=gr.len)

mn <- apply(t.ds[-lcol],2,mean)

std <- apply(t.ds[-lcol],2,sd)

gr <- as.data.frame(matrix(sapply(mn,rep,gr.len^2),gr.len^2,ncol(t.ds)-1))

gr.sc <- as.data.frame(matrix(0,gr.len^2,ncol(t.dsnet)-1))

gr[,c(xcol,ycol)] <- expand.grid(x,y)

gr.sc[,c(xcol,ycol)] <- expand.grid((x-mn[xcol])/std[xcol],(y-mn[ycol])/

std[ycol])

names(gr) <- names(gr.sc) <- names(t.ds)[-lcol]

Z <- matrix(0,nrow(gr),length(levels(t.ds[,lcol])))

tree.pr <- predict(rp.pr,newdata=gr,type="prob")

b1(tree.pr,lwd = 3)

plt(t.ds,xcol,ycol,lcol,xlim=c(0,18))

#compute nnet average

for(iter in 1:nrep)

{

fit.nn <- nnet(formula,t.dsnet,maxit=500,size=size.opt,decay=dec.opt,

trace=FALSE,...)

fit.pr <- predict(fit.nn,gr.sc)

b1(fit.pr)

Z <- Z + fit.pr

}

b1(Z, lwd=3, lty = 2)

}

Preliminary discussion: Friday, June 9, 2006. Deadline: Friday, June 16, 2006.

Advice: Thursdays from 12.00-13.00, LEO C15, Leonhardstr. 27. Or contact either Bernadetta
Tarigan, tarigan@stat.math.ethz.ch, or Nicoleta Gosoniu, gosoniu@ifspm.unizh.ch.


