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Why include a qualitative independent variable?
m We are interested in the effect of a qualitative independent variable (for example: do men earn more
than women?)

m We want to better predict/describe the dependent variable. We can make the errors smaller by
including variables like gender, race, etc.

m Qualitative variables may be confounding factors. Omitting them may cause biased estimates of
other coefficients.
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Simplest model 3/25
Simplest case
m Example:
O Dependent variable: income
O One quantitative independent variable: education
O One dichotomous (can take two values) independent variable: gender
m Assume effect of either independent variable is the same, regardless of the value of the other
variable (additivity, parallel regression lines).
m Usual assumptions on statistical errors: independent, zero means, constant variance, normally
distributed, fixed X's or X independent of statistical errors.
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Example (continued)

m Suppose that we are interested in the effect of education on income, and that gender has an effect
on income.

m Scenario 1: Gender and education are uncorrelated

O Gender is not a confounding factor

O Omitting gender gives correct slope estimate, but larger errors
m Scenario 2: Gender and education are correlated

O Gender is a confounding factor

0O Omitting gender gives biased slope estimate, and larger errors
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Possible solution: separate regressions

m Fit separate regression for men and women
m Disadvantages:
O How to test for the effect of gender?
O If it is reasonable to assume that regressions for men and women are parallel, then it is more
efficient to use all data to estimate the common slope.
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Independent variable vs. regressor

m Y =income, X=education, D=regressor for gender:

1 for men
Di = { 0 for women

m Independent variable = real variables of interest
m Regressor = variable put in the regression model

m In general, regressors are functions of the independent variables. Sometimes regressors are equal to
the independent variables.
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Common slope model
mYi=a+pXi+vDi+€
m For women (D; = 0):
Y;' :a+ﬁXi+’Y'0+ei:oz+ﬁXi+q
m For men (D; =1):
Yi=a+6Xi+y- 146 =(a+7)+8X,+¢

m What are the interpretations of o, # and ~?

m What happens if we code D =1 for women and D = 0 for men?
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Testing

m Test the partial effect of gender (=effect of gender when education is in the model):
0O Hy:v=0,Hy:v#0
O Same as before:
Compute t-statistic or incremental F-test
m Test the partial effect of education (=effect of education when gender is in the model):
O Hy:6=0,H,:6#0
0 Same as before:
Compute t-statistic or incremental F-test
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More than one quantitative independent variable
m All methods go through, as long as we assume parallel regression surfaces.
m Model: Y; =«a+ ﬂlXil +---+ ﬂszk + ’YDZ‘ + €.
= Women (D; = 0):
Yi=a+bXa+ 45Xk +7 0+6
=a+ X+ + BeXi + 6
m Men (D; = 1):
Yi=a+bXa+ -+ 5Xg+v 1+6
=(a+7)+5Xa+ -+ 8Xi t e
m Interpretation of «, B1,..., Bk, V-
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Polytomous independent variables

m Qualitative variable with more than two categories
m Example: Duncan data:

O Dependent variable: Y =prestige

0 Quantitative independent variables:

Xi=income and Xy=education

O Qualitative independent variable: type (bc, prof, wc)
m Dy and D5 are regressors for type:

Type | D1 Dy

Blue collar (bc) 0 O

Professsional (prof) | 1 0

White collar (wc) 0 1
m If there are p categories, use p — 1 dummy regressors.

What happens if we use p regressors?
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Example (continued)
Y =a+ 51 X1+ BXo+71D1 4Dy +€
m Blue collar (D;; =0 and D3 = 0):
Yi=a+5Xig+32Xe+71 -0+%-0+¢
=a+ X+ FXe+te
m Professional (D;; =1 and D;; = 0):
Yi=a+5Xg+B8Xo+tn - 1+7%-0+¢
= (a+m)+ /1 X + FoXio + €
m White collar (D;; =0 and D;; = 1):
Yi=a+5Xig+5Xo+7-0+7-1+¢
= (a+72) + f1 X1 + FoXio + €
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Testing with polytomous independent variable

m Test partial effect of type, i.e., the effect of type controlling for income and education.
m Hy:y1=72=0

m H,: atleastone v; #0, j =1,2.

m Incremental F-test:

O Null model:
Y=a+5©X1+PXs+e€
O Full model:

Y =a+ 05X+ 0Xo+7D1+7D2+¢
m What do the individual p-values in summary (1m()) mean?
m First look at F-test, then at individual p-values
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R commands

m Creating dummy variables by hand:
D1 <- (type=="prof")x*1
D2 <- (type=="wc")*1
ml <- Im(prestige~education+income+D1+D2)
m Letting R do things automatically:
ml <- lm(prestige~education+income+type)
ml <- lm(prestige~education+income+factor (type))
m The use of factor():
O factor () is not needed in this example, because the coding of the categories is in words:
"bc", "prof’, "wc".
O It is essential to use factor () if the coding of the categories is numerical!
O To be safe, you can always use factor.
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More than one qualitative independent variable

m Example: Y=prestige, X;1=income, Xyo=education,
Type | D1 Dy
Blue collar 0 0
Professional | 1 0
White collar | 0 1

and

Gender | D3
Women | 0
Men 1

n Y =a+ X1+ 6Xe + D1 +v2D2+v3D3 + €
m What is the equation for men with professional jobs? And for women with white collar jobs?
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Interaction 17 / 25

Definition
m Two variables are said to interact in determining a dependent variable if the partial effect of one
depends on the value of the other.
m So far we only studied models without interaction.

m Interaction between a quantitative and a qualitative variable means that the regression surfaces are
not parallel. See picture.

m Interaction between two qualitative variables means that the effect of one of the variables depends
on the value of the other variable. Example: the effect of type of job on prestige is bigger for men
than for women.

m Interaction between two quantitative variables is a bit harder to interpret, and we may consider that
later.
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Interaction vs. correlation

m First, note that in general, the independent variables are not independent of each other.

m Correlation:
Independent variables are statistically related to each other.

m [nteraction:
Effect of one independent variable on the dependent variable depends on the value of the other
independent variable.

m Two independent variables can interact whether or not they are correlated.
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Constructing regressors
m Y=income, X=education, D=dummy for gender
u Yz =+ ﬂXZ —|-"YDZ' + (5(XZDZ) + €

m Note X - D is a new regressor. It is a function of X and D, but not a linear function. Therefore we
do not get perfect collinearity.

= Women (D; = 0):
Yi=a+BX;+7-0+6(X;-0)+¢ =a+BX; +¢

m Men (D; =1)
Yi=a+pBXi+7-1+6(X-1) + 6
=(a+7)+(B+0)Xi+e

m Interpretation of a, (3, v, 9.
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Testing

m Testing for interaction is testing for a difference in slope between men and women. Hy: § = 0 and
H,:6#0.
m What is the difference between:
O The model with interaction

O Fitting two separate regression lines for men and women
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Principle of marginality
m If interaction is significant, do not test or interpret main effects:
O First test for interaction effect.
O If no interaction, test and interpret main effects.
m If interaction is included in the model, main effects should also be included.
m See pictures of models that violate the principle of marginality.
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Polytomous independent variables

m Create interaction regressors by taking the products of all dummy variable regressors and the
quantitative variable.

m Example:
O Y =prestige, X;=education, Xo=income
O Dq, Dy=dummies for type of job

Y =a+ 31 X1+ X2 +71D1 + v2Ds
4+ 011 X1 D1 + 019 X1 Do + 991 Xo D1 + d09 X9 Dg + €

m Interpretation of parameters
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Hypothesis tests
m When testing for main effects and interactions, follow principle of marginality
m Use incremental F-test
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Standardized estimates

m Do not standardize dummy-regressor coefficients.

m Dummy regressor coefficient has clear interpretation.

m By standardizing it, this interpretation gets lost. Therefore we don't standardize dummy regressor
coefficients.

m Also, don't standardize interaction regressors. You can standardize the quantitative independent
variable before taking its product with the dummy regressor.
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