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Outline

m We have seen that linear regression has its limitations. However, it is worth studying linear
regression because:
0 Sometimes data (nearly) satisfy the assumptions.
O Sometimes the assumptions can be (nearly) satisfied by transforming the data.
O There are many useful extensions of linear regression: weighted regression, robust regression,
nonparametric regression, and generalized linear models.
m How does linear regression work? We start with one independent variable.
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Simple linear regression 3 /38

Linear model

m Linear statistical model: ¥ = a + X + €.
m « is the intercept of the line, and 3 is the slope of the line. One unit increase in X gives 3 units
increase in Y. (see figure on blackboard)

m c is called a statistical error. It accounts for the fact that the statistical model does not give an
exact fit to the data.
m Statistical errors can have a fixed and a random component.

0 Fixed component: arises when the true relation is not linear (also called lack of fit error, bias) -
we assume this component is negligible.

O Random component: due to measurement errors in Y, variables that are not included in the
model, random variation.
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Linear model

m Data (X1,Y7),...,(X,, Yn).
m Then the model gives: Y; = a + 8X; + ¢;, where ¢; is the statistical error for the ith case.
m Thus, the observed value Y; equals a + X, except that ¢;, an unknown random quantity is added
on.

m The statistical errors ¢; cannot be observed. Why?
m We assume:

0 E(e) =0

0 Var(e;) =02 foralli=1,...,n

O Cov(ei,€ej) =0 forall i #j
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Linear model

The population parameters «, 3 and o are unknown. We use lower case Greek letters for population
parameters.

We compute estimates of the population parameters: &, B and 6.

Y; = &+ (X is called the fitted value. (see figure on blackboard)

& =Y, —Y;=Y; — (&+ fX;) is called the residual.

The residuals are observable, and can be used to check assumptions on the statistical errors ¢;.
Points above the line have positive residuals, and points below the line have negative residuals.
A line that fits the data well has small residuals.
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Small residuals

We want the residuals to be small in magnitude, because large negative residuals are as bad as large
positive residuals.

So we cannot simply require > & = 0.
In fact, any line through the means of the variables - the point (X,Y) - satisfies >_¢& =0
(derivation on board).
Two immediate solutions:
O Require ) |é;| to be small.
0 Require Y ¢ to be small.

We consider the second option because working with squares is mathematically easier than working
with absolute values (for example, it is easier to take derivatives). However, the first option is more
resistant to outliers.

Eyeball regression line (see overhead).
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Minimize > é?
m SSE stands for Sum of Squared Error.
» We want to find the pair (&, 3) that minimizes SSE(d, ) := S)(V; — & — 3X;)2.
m Thus, we set the partial derivatives of RSS(d,B) with respect to & and B equal to zero:
9SSE (.3 .3
0 25PED S (—1)()(Y; — & — fX;) =0
g SSAD _ 3(-X)(@)(Y; - & - X)) = 0
= Y X;(Y; — & — X;) = 0.
= We now have two normal equations in two unknowns @& and 3. The solution is (derivation on board,
p. 18 of script):

h_ L(X=X)(Vi-Y)
>(Xi—X)?

Y - X

d
O a
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Properties of residuals

m )¢ =0, since the regression line goes through the point (X,Y).
m > X;é =0 and folél = Q = The residuals are uncorrelated with the independent variables X;
and with the fitted values Y;.

m Least squares estimates are uniquely defined as long as the values of the independent variable are
not all identical. In that case the numerator Y (X; — X)? = 0 (see figure on board).
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Regression in R

m model <- lm(y ~ x)

m summary (model)

m Coefficients: model$coef or coef (model)

(Alias: coefficients)

Fitted mean values: model$fitted or fitted(model)
(Alias: fitted.values)

Residuals: model$resid or resid(model)

(Alias: residuals)
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R output - Davis data

> model <- lm(weight
> summary (model)

repwt)

Call: lm(formula = weight ~ repwt)

Residuals:
Min 1Q Median 3Q Max
-5.5248 -0.7526 -0.3654 0.6118 6.3841

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.77750 1.74441 1.019 0.311
repwt 0.97722 0.03053 32.009 <2e-16 *xx*

Signif. codes: O “***’ 0.001 ‘¥x> 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1
Residual standard error: 2.057 on 99 degrees of freedom

Multiple R-Squared: 0.9119, Adjusted R-squared: 0.911
F-statistic: 1025 on 1 and 99 DF, p-value: < 2.2e-16
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How good is the fit? 12 / 38

Residual standard error

» Residual standard error: 6 = \/SSE/(n —2) =/ %:_552

m n — 2 is the degrees of freedom (we lose two degrees of freedom because we estimate the two
parameters a and [3).

m For the Davis data, & ~ 2. Interpretation:

O on average, using the least squares regression line to predict weight from reported weight,
results in an error of about 2 kg.

O If the residuals are approximately normal, then about 2/3 is in the range £2 and about 95% is
in the range +4.
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R2

m We compare our fit to a null model Y = o/ + €', in which we don’t use the independent variable X.

» We define the fitted value Y/ = &/, and the residual & = Y; — V7.
m We find & by minimizing Y (&})* = >(Y; — &)2. This gives & =Y.
m Note that 3(V; — V5)? = 3. & < S2(¢)? = S2(V; — V)2 (why?).
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R2
m 7SS =3 (€)= (Vi — Y)? is the total sum of squares: the sum of squared errors in the model
that does not use the independent variable.
m SSE=)" é? => (Y — YZ)2 is the sum of squared errors in the linear model.

m Regression sum of squares: RegSS = TSS — SSE gives reduction in squared error due to the linear
regression.

m R? = RegSS/TSS =1—SSE/TSS is the proportional reduction in squared error due to the linear
regression.

m Thus, R? is the proportion of the variation in Y that is explained by the linear regression.
m R? has no units = doesn’t chance when scale is changed.

m ‘Good’ values of R? vary widely in different fields of application.
15/ 38
Analysis of variance
m S (Vi = Y)(Y; — V) = 0 (will be shown later geometrically)
m RegSS = S(V; — Y)? (derivation on board)
m Hence,
TSS =SSE +RegSS
Y(Yi-Y)? =3(Yi-Y)? +3X(Y;-Y)?
This decomposition is called analysis of variance.
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m Correlation coefficient 7 = +v/ R? (take positive root if > 0 and take negative root if § < 0).

m 7 gives the strength and direction of the relationship.
(X =X)(Yi—Y)

VEXi—X)2 L (Yi-Y)?

m Using this formula, we can write ﬁ = 7’%

(derivation on board).

m Alternative formula: » =

m In the ‘eyeball regression’, the steep line had slope %, and the other line had the correct slope
SDy
TShs-

m 7 is symmetric in X and Y.
m 7 has no units = doesn’t change when scale is changed.
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Multiple linear regression 18 / 38

> 2 independent variables

m Y =a+ 1 X)+ (2Xo+ e (see p. 9 of script)

m This describes a plane in the 3-dimensional space { X7, X2,Y} (see figure):
O « is the intercept
O By is the increase in Y associated with a one-unit increase in X; when X5 is held constant
O pBs is the increase in Y for a one-unit increase in Xo when X7 is held constant.
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Statistical error

» Data: (X1, Xi12,Y1),..., (Xn1, X2, Y2).
m Y, =a+ 51 X1 + BoXie + €, where ¢ is the statistical error for the ith case.

m Thus, the observed value Y; equals o + (1 X;1 + B2X52, except that ¢;, an unknown random quantity
is added on.

m We make the same assumptions about € as before:
0 E(e) =0
O Var(e;)) = o2 foralli=1,...,n
O Cov(ej,€5) =0 for all i # j
m Compare to assumption on p. 14-16 of script.
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Estimates and residuals

m The population parameters «, (31, 2, and o are unknown.

m We compute estimates of the population parameters: &, Bl, Bg and &.

m Y, =&+ 31X + B2X;o is called the fitted value.

=Y, -Y,i=Y,— (& + BlXil + ﬁgXig) is called the residual.

m The residuals are observable, and can be used to check assumptions on the statistical errors ¢;.

m Points above the plane have positive residuals, and points below the plane have negative residuals.

A plane that fits the data well has small residuals.
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Computing estimates

m The triple (d,Bl,Bg) minimizes SSE(a, 81, B2) = Y. é7 = > (Vi —a — B1 X1 — B2 Xi2)%
m We can again take partial derivatives and set these equal to zero.

m This gives three equations in the three unknowns «, (3; and (5. Solving these normal equations
gives the regression coefficients &, (31 and fs.

m Least squares estimates are unique unless one of the independent variables is invariant, or
independent variables are perfectly collinear.

m The same procedure works for p independent variables X,..., X,. However, it is then easier to use
matrix notation (see board and section 1.3 of script).

m In R: model <- 1m(y ~ x1 + x2)
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Properties of residuals

Y& =0
m The residuals €; are uncorrelated with the fitted values YZ and with each of the independent
variables X1,..., X,.

m The standard error of the residuals 6 = \/Z ¢2/(n — p — 1) gives the “average” size of the residuals.

m n—p—1is the degrees of freedom (we lose p + 1 degrees of freedom because we estimate the p+ 1
parameters «, (1, ..., ).
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R? and R?

m 7SS=> (Y — Y)2

" SSE=Y(Yi- Vi =y e

m RegSS =TSS — SSE =S (V; — V)2

m R? = RegSS/TSS =1— SSE/TSS is the proportion of variation in Y that is captured by its
linear regression on the X's.

m R? can never decrease when we add an extra variable to the model. Why?

m Corrected sum of squares: RZ =1 — % penalizes R? when there are extra variables in the
model.

» R? and R? differ very little if sample size is large.
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Ozone example
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0O RAIN = Average winter precipitation in centimeters in the San Francisco Bay area for the
preceding two winters

m Research question: How does SF depend on YEAR and RAIN?
m Think about assumptions: Which one may be violated?

Ozone example

m Data from Sandberg, Basso, Okin (1978):

0 SF = Summer quarter maximum hourly average ozone reading in parts per million in San
Francisco

O SJ = Same, but then in San Jose
O YEAR = Year of ozone measurement
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YEAR
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977

RAIN SF
18.
23.
26.
26.
39.
45.
26.
19.
30.
34.
23.
14.
7.

Ozone data
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R output

> model <- lm(sf ~ year + rain)
> summary (model)

Call: Im(formula = sf ~ year + rain)

Residuals:
Min 1Q Median 3Q Max
-0.61072 -0.20317 0.06129 0.16329 0.51992

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 388.412083 49.573690  7.835 1.41e-05 *x*x

year -0.195703 0.025112 -7.793 1.48e-05 *x*x*
rain 0.034288 0.009655 3.551 0.00526 *x*
Signif. codes: O ‘*xx’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’> 1

Residual standard error: 0.3224 on 10 degrees of freedom
Multiple R-Squared: 0.9089, Adjusted R-squared: 0.8906
F-statistic: 49.87 on 2 and 10 DF, p-value: 6.286e-06
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Standardized coefficients 29 / 38

Standardized coefficients

m We often want to compare coefficients of different independent variables.
m When the independent variables are measured in the same units, this is straightforward.

m If the independent variables are not commensurable, we can perform a /imited comparison by
rescaling the regression coefficients in relation to a measure of variation:

O using hinge spread
O using standard deviations
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Using hinge spread
m Hinge spread = interquartile range (IQR)
m Let IQRy,...,IQR, be the IQRs of X1,...,X,,.
m We start with Y; = &+ ngil + ... ngip + €;.
m This can be rewritten as: Y; = &+ (BlfQR1> 15?;1 + -4 (ﬁpIQRp> I‘g—iﬁp + &.
o Xy S .
m Let ?U _AIQRJ' forj=1,...,pandi=1,...,n.
m Let 57 = 5;IQR;, j=1,...,p.
m Then we get Y; = d+BfZi1 +---+B;Zip+éi.
n B; = ﬁjl QR; is called the standardized regression coefficient.
31/ 38
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Interpretation

m Interpretation: Increasing Z; by 1 and holding constant the other Z;'s (¢ # j), is associated, on
average, with an increase of Bj* inY.

m Increasing Z; by 1, means that X is increased by one IQR of Xj.

m So increasing X; by one IQR of X; and holding constant the other X,'s (¢ # j), is associated, on
average, with an increase of ﬁ; inY.

m Ozone example:
Variable ‘ Coeff. ‘ Hinge spread ‘ Stand. coeff.
Year -0.196 | 6 -1.176
Rain ‘ 0.034 ‘ 11.6 ‘ 0.394
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Using st.dev.

m Let Sy be the standard deviation of Y, and let Sy, ..., S, be the standard deviations of X1,..., X,.
m We start with Y; = & + ﬁAlXil + ... ngip + €;.
m This can be rewritten as (derivation on board):
i-Y _ (A4 81\ Xu—X 5 Sp ) Xip—X é
Sy _<ﬁ1§> 151 1+"'+<ﬁp§) psp p+Sy'

m Let Z;y = Yg:}_/ and Z;; = % forj=1,...,p.
J

m Let 3f = j3;5L and & = &
» Then we get Ziy = (1 Zy +"‘+B;Zip+€;‘k-

B]* = ng—; is called the standardized regression coefficient.

33/ 38

Interpretation

m Interpretation: Increasing Z; by 1 and holding constant the other Z;'s (¢ # j), is associated, on
average, with an increase of 5; in Zy.

m Increasing Z; by 1, means that X is increased by one SD of X;.

m Increasing Zy by 1 means that Y is increased by one SD of Y.

= So increasing X; by one SD of X; and holding constant the other X,'s (¢ # j), is associated, on
average, with an increase of 37 SDs of Y in Y.

34 / 38
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Ozone example

m Ozone example: .
Variable ‘ Coeff. ‘ St.dev(variable) ‘ Stand. coeff.

St.dev(Y)
Year -0.196 | 3.99 -0.783
Rain 0.034 | 10.39 0.353

m Both methods (using hinge spread or standard deviations) only allow for a very limited comparison.
They both assume that predictors with a large spread are more important, and that does not need
to be the case.
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Summary 36 / 38

Summary

m Linear statistical model: ¥ = a + 51 X7 +--- + 3, X, + €.

m We assume that the statistical errors € have mean zero, constant standard deviation o, and are
uncorrelated.

m The population parameters «, (31,...,[3, and o cannot be observed. Also the statistical errors €
cannot be observed.

m We define the fitted value Y; = & + BlXil 4+ 4 BpXip and the residual ¢, = Y; — Y;. We can use
the residuals to check the assumptions about the statistical errors.

m We compute estimates d,ﬁl, e ,ﬁp for o, 81, ..., 3, by minimizing the residual sum of squares
SSE =& =S(Y; — (a4 (1 Xi + -+ 3, Xp))2.

m Interpretation of the coefficients?
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Summary

m To measure how good the fit is, we can use:
O the residual standard error 6 = /SSE/(n —p — 1)
O the multiple correlation coefficient R?

O the adjusted multiple correlation coefficient R2

O the correlation coefficient r
m Analysis of variance (ANOVA): T'SS = SSE + RegSS
m Standardized regression coefficients

38/ 38
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