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Logistic regression

Logistic regression can be used when the dependent variable has two outcomes: yes/no, 0/1.
Predict/describe E(Y;|z;).
Why can't we use linear regression?

Testing with logistic regression

2/ 14

Example: Chilean plebiscite data

m Some history:
0 1973: Coup = military government of Pinochet

0 1988: Plebiscite to decide the future of the government:
Yes-vote = keep military government for 8 more years,
No-vote = change to civilian government.

m Six months before plebiscite, national survey of 2700 randomly selected Chilean voters:
O 868 planned to vote yes
O 889 planned to vote no
O 558 were undecide
O 187 planned to abstain
O 168 did not answer
m We only look at yes/no votes
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Why is the linear model not good for these data?

m Problems:

O The model is only reasonable for a limited range. Outside this range we get fitted values that
are smaller than zero or larger than one.

O Nonparametric regression shows S-shaped fit, not a linear fit.

O Y; can only take values 0 and 1. Errors are not normally distributed. However, for large sample
sizes, the central limit theorem will save us.

O The variance of the statistical errors is not constant.
m Why don’t we have similar problems with 0-1 independent variables?
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Possible solutions

m Cut off the graph at zero and one.
O Sometimes OK, if relationship is approximately linear in a certain range
m Use logistic regression:
O logit(u) = log(u/(1 — u)).
O If uw € (0,1), then logit(u) € (—o0, )
O In principle, one could use logit transformation on the y-values, but one has to perturb them a
little bit (how much?) since logit(0) and logit(1) are not defined

O We perform the logit transformation on E(Y;|z;):
logitE(Y;|z;) = a + Bx;
logit Py(Y; = 1|z;) = a + Py
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Interpretation in terms of hidden variables
See board
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Computation of the estimator
m Write logitPy(YV; = 1]x;) = x1'60, where § = (a, )
m Density of one observation:
PylY; = 1x;] \ ¥
BlYi=yilxi| = | 57— ) PolYi=0x;
= i) = (=gt rulvi = o
= explyix] 0 — log(1 + exp(x;” 6))]
m Log likelihood:
100) = log Pp(Y; = yilx;)
i=1
= [yix] 6 —log(1 + exp(x] 0))]
i=1
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Computation of the estimator (2)

m Maximizer is given by solution of:

m Solve with iterative methods
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Interpretation: 7;, odds and log odds

m Let m; = P(Y = 1|z;) be the conditional probability that Y = 1 given that X = z;.
Note that E(Y'|z;) = m; (derivation on board).

m;/(1 — m;) are the odds that Y =1 given X = z;.

log(m;/(1 — m;)) are the log odds.

See table for log odds.
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Interpretation

logit(;) = log < ) = o+ fBx;.

m Logistic regression is an additive model for the log odds. This gives one interpretation for 3: If X is
increased by one, then the log odds are increased by .
m Logistic regression is a multiplicative model for the odds:

1_7Ti

1 Zm = exp(a + 8X;) = exp(a)[exp(B)]*

This gives another interpretation for 3: If X is increased by one, then the odds are multiplied by

exp(f).

m Note that: )

T T exp—(a + X))
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Interpretation (2)

1
" 1+ exp[—(a+ 0X;)]

T

m Differentiating with respect to X; (see derivation on board) gives that the slope at X is m;(1 — ;).
m Hence, the derivative of the fitted graph is m;(1 — m;)3. This gives a third interpretation for 3. If

X =z, and X is increased by € (small), then m; will increase by em;(1 — m;)(.

m See table of slopes. Note that the slopes are quite constant between m = 0.2 and w = 0.8. In this
range the S-curve is close to linear.

m We don't interpret a.

m How does all this work for the Chile data?
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Multiple logistic regression
T
log<1 >:a+ﬁlXi1+"'+ﬁkXik
g
T = explat fiXo + -+ BpXir)
(2
= exp(a) exp(81Xi1) . .. exp(Bp Xik)
= exp(a)[exp(B1)]* . .. [exp(By)]
1
=
1+ exp|—(a+ /1 X1 + -+ + B Xir)]
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Types of independent variables
m The X's can be as general as in linear regression:
O quantitative variables
O transformations of quantitative variables
O dummy regressors for qualitative variables
O interaction regressors
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Testing with logistic regression

m Wald test (analogous to t-test)
m Likelihood ratio test (analogous to F-test)
O Full model my
O Null model myq (special case of full model)
0O Compute likelihood for both models: Ly and Lg. Ly > Lg. Why?
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