10. Logistic regression

gistic regression	. 2
ample: Chilean plebiscite data	. 3
hy is the linear model not good for these data?	. 4
ssible solutions	. 5
terpretation in terms of hidden variables	. 6
omputation of the estimator	. 7
omputation of the estimator (2)	. 8
terpretation: π_i , odds and log odds \ldots	. 9
terpretation	. 10
terpretation (2)	. 11
ultiple logistic regression	. 12
pes of independent variables	. 13
sting with logistic regression	. 14

Logistic regression

- \blacksquare Logistic regression can be used when the dependent variable has two outcomes: yes/no, 0/1.
- Predict/describe $E(Y_i|x_i)$.
- Why can't we use linear regression?
- Testing with logistic regression

2 / 14

Example: Chilean plebiscite data

- Some history:
 - ◆ 1973: Coup ⇒ military government of Pinochet
 - ◆ 1988: Plebiscite to decide the future of the government:

Yes-vote = keep military government for 8 more years,

No-vote = change to civilian government.

- Six months before plebiscite, national survey of 2700 randomly selected Chilean voters:
 - ◆ 868 planned to vote yes
 - ♦ 889 planned to vote no
 - ◆ 558 were undecide
 - ◆ 187 planned to abstain
 - ◆ 168 did not answer
- We only look at yes/no votes

3 / 14

Why is the linear model not good for these data?

- Problems:
 - ◆ The model is only reasonable for a limited range. Outside this range we get fitted values that are smaller than zero or larger than one.
 - ◆ Nonparametric regression shows S-shaped fit, not a linear fit.
 - ullet Y_i can only take values 0 and 1. Errors are not normally distributed. However, for large sample sizes, the central limit theorem will save us.
 - ◆ The variance of the statistical errors is not constant.
- Why don't we have similar problems with 0-1 independent variables?

Possible solutions

- Cut off the graph at zero and one.
 - ◆ Sometimes OK, if relationship is approximately linear in a certain range
- Use logistic regression:
 - $\bullet \ \mathsf{logit}(u) = \log(u/(1-u)).$
 - lacktriangle If $u \in (0,1)$, then $\mathsf{logit}(u) \in (-\infty,\infty)$
 - lacktriangle In principle, one could use logit transformation on the y-values, but one has to perturb them a little bit (how much?) since logit(0) and logit(1) are not defined
 - lacktriangle We perform the logit transformation on $E(Y_i|x_i)$:

$$logit E(Y_i|x_i) = \alpha + \beta x_i$$
$$logit P_{\theta}(Y_i = 1|x_i) = \alpha + \beta x_i$$

5 / 14

Interpretation in terms of hidden variables

See board

6 / 14

Computation of the estimator

- Write logit $P_{\theta}(Y_i = 1 | x_i) = \mathbf{x}_i^T \theta$, where $\theta = (\alpha, \beta)^T$
- Density of one observation:

$$P_{\theta}[Y_i = y_i | \mathbf{x}_i] = \left(\frac{P_{\theta}[Y_i = 1 | \mathbf{x}_i]}{P_{\theta}[Y_i = 0 | \mathbf{x}_i]}\right)^{y_i} P_{\theta}[Y_i = 0 | \mathbf{x}_i]$$
$$= \exp[y_i \mathbf{x}_i^T \theta - \log(1 + \exp(\mathbf{x}_i^T \theta))]$$

■ Log likelihood:

$$l(\theta) = \sum_{i=1}^{n} \log P_{\theta}(Y_i = y_i | x_i)$$
$$= \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^T \theta - \log(1 + \exp(\mathbf{x}_i^T \theta)) \right]$$

Computation of the estimator (2)

■ Maximizer is given by solution of:

$$\sum_{i=1}^{n} (y_i - P_{\hat{\theta}}[Y_i = 1 | \mathbf{x}_i]) \mathbf{x}_i = \mathbf{0}$$

■ Solve with iterative methods

8 / 14

Interpretation: π_i , odds and log odds

- Let $\pi_i = P(Y = 1 | x_i)$ be the conditional probability that Y = 1 given that $X = x_i$.
- Note that $E(Y|x_i) = \pi_i$ (derivation on board).
- $\pi_i/(1-\pi_i)$ are the *odds* that Y=1 given $X=x_i$.
- $\log(\pi_i/(1-\pi_i))$ are the *log odds*.
- See table for log odds.

9 / 14

Interpretation

$$logit(\pi_i) = log\left(\frac{\pi_i}{1 - \pi_i}\right) = \alpha + \beta x_i.$$

- Logistic regression is an additive model for the log odds. This gives one interpretation for β : If X is increased by one, then the *log odds* are *increased* by β .
- Logistic regression is a multiplicative model for the odds:

$$\frac{\pi_i}{1 - \pi_i} = \exp(\alpha + \beta X_i) = \exp(\alpha) [\exp(\beta)]^{X_i}$$

This gives another interpretation for β : If X is increased by one, then the *odds* are *multiplied* by $\exp(\beta)$.

■ Note that:

$$\pi_i = \frac{1}{1 + \exp[-(\alpha + \beta X_i)]}$$

Interpretation (2)

$$\pi_i = \frac{1}{1 + \exp[-(\alpha + \beta X_i)]}$$

- Differentiating with respect to X_i (see derivation on board) gives that the slope at X_i is $\pi_i(1-\pi_i)\beta$.
- Hence, the derivative of the fitted graph is $\pi_i(1-\pi_i)\beta$. This gives a third interpretation for β . If $X=x_i$, and X is increased by ϵ (small), then π_i will increase by $\epsilon\pi_i(1-\pi_i)\beta$.
- See table of slopes. Note that the slopes are quite constant between $\pi=0.2$ and $\pi=0.8$. In this range the S-curve is close to linear.
- We don't interpret α .
- How does all this work for the Chile data?

11 / 14

Multiple logistic regression

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik}$$

$$\frac{\pi_i}{1 - \pi_i} = \exp(\alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

$$= \exp(\alpha) \exp(\beta_1 X_{i1}) \dots \exp(\beta_k X_{ik})$$

$$= \exp(\alpha) [\exp(\beta_1)]^{X_{i1}} \dots [\exp(\beta_k)]^{X_{ik}}$$

$$\pi_i = \frac{1}{1 + \exp[-(\alpha + \beta_1 X_{i1} + \dots + \beta_k X_{ik})]}$$

12 / 14

Types of independent variables

- \blacksquare The X's can be as general as in linear regression:
 - quantitative variables
 - transformations of quantitative variables
 - dummy regressors for qualitative variables
 - ◆ interaction regressors

Testing with logistic regression

- Wald test (analogous to t-test)
- Likelihood ratio test (analogous to F-test)
 - lacktriangle Full model m_1
 - lacktriangle Null model m_0 (special case of full model)
 - lacktriangle Compute likelihood for both models: L_1 and L_0 . $L_1 \geq L_0$. Why?