
Chapter 8

Bagging and Boosting

8.1 Introduction

Bootstrap aggregating (bagging) and boosting are useful techniques to improve the pre-
dictive performance of tree models. Boosting may also be useful in connection with many
other models, e.g. for additive models with high-dimensional predictors; whereas bagging
is most prominent for improving tree algorithms.

8.2 Bagging

Consider a base procedure, e.g. a tree algorithm such as CART, which yields a function
estimate

ĝ(·) : Rp → R

(or ĝ(·) takes values in [0, 1] for classification).

8.2.1 The bagging algorithm

Bagging works as follows.

1. Generate a bootstrap sample

(X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n )

and compute the bootstrapped estimator ĝ∗(·).
2. Repeat step 1 B times, yielding

ĝ∗1(·), . . . , ĝ∗B(·).

3. Aggregate the bootstrap estimates

ĝBag(·) = B−1
B∑
i=1

ĝ∗i(·).

The bagging algorithm is nothing else than an approximation

ĝBag(·) ≈ E∗[ĝ∗(·)]
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which can be made arbitrarily good by increasing B. The novel point is that we should
use now E∗[ĝ ∗ (·)] as a new estimator.

A trivial identity hints at some properties of bagging: write (the theoretical version of
bagging with B =∞)

ĝBag(·) = ĝ(·) + (E∗[ĝ∗(·)]− ĝ(·))
= ĝ(·) + bootstrap bias estimate.

Instead of subtracting the bootstrap bias estimate, we are adding it! What we can hope
for is a variance reduction at the price of a higher bias. This turns out to be true if ĝ(·)
is a tree-based estimator.

8.2.2 Bagging for trees

It can be shown that for tree-based estimators ĝ(·),

Var(ĝBag(x))
asymp.
< Var(ĝ(x)),

for very many x. Thus, bagging is a variance reduction technique. The reason for this
is that a bagged tree turns out to be a product of probit functions Φ(d − ·) instead of
indicator functions 1[·≤d]. This causes a variance reduction at the price of some bias. For
example,

Var(1[X≤d]) = P[X ≤ d](1− P[X ≤ d]).

If X ∼ N (0, 1) and d = 0, the latter quantity equals 1/4. On the other hand,

Var(Φ(−X)) = Var(U) = 1/12, U ∼ Unif.([0, 1]),

which reduces the variance by the factor 3!
We should use large trees for bagging, because the variance reduction due to bagging

asks for a large tree to balance the bias-variance trade-off.

8.2.3 Subagging

Subagging (subsample aggregating) is a version of bagging: instead of drawing a boot-
strap sample in step 1 of the bagging algorithm, we draw

(X∗1 , Y
∗
1 ), . . . , (X∗m, Y

∗
m) without replacement

for some m < n. In some simple cases, it can be shown that m = [n/2] is equivalent to
bagging. Thus, subagging with m = [n/2] can be viewed as a computationally cheaper
version of bagging.

We consider a dataset about ozone concentration with p = 8 predictor variables (dif-
ferent from the previous ozone dataset). The performance of (su-)bagging for trees and
MARS are shown in Figure 8.1. We see that bagging improves a regression tree substan-
tially while it does not improve MARS at all (for this example).

The main drawback of bagging is the loss of interpretation in terms of a tree. It is by
no means simple to interpret a linear combination of trees.
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regression tree for ozone data
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Figure 8.1: Mean squared error performance for a large regression tree and MARS and
their (su-)bagged versions for an ozone data (different from the previous one).

8.3 Boosting

Boosting is a very different method to generate multiple predictions (function estimates)
and combine them linearly. As with bagging, we have a base procedure yielding function
estimates ĝ(·) (e.g. a tree algorithm).

8.3.1 L2Boosting

The so-called L2Boosting method (for regression) works as follows.

1. Fit a first function estimate from the data {(Xi, Yi); i = 1, . . . , n} yielding a first
function estimate ĝ1·).
Compute residuals

Ui = Yi − ĝ1(Xi) (i = 1, . . . , n).

Denote by f̂1(·) = νĝ1(·) (0 < ν ≤ 1).

2. For m = 2, 3, . . . ,M do:
Fit the residuals

(Xi, Ui)→ ĝm(·)
and set

f̂m(·) = f̂m−1(·) + νĝm(·).
Compute the current residuals

Ui = Yi − f̂m(Xi) (i = 1, . . . , n).
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The shrinkage parameter ν can be chosen to be small, e.g. ν = 0.1. The stopping
parameter M is a tuning parameter of boosting. For ν small we typically have to choose
M large.

Boosting is a bias reduction technique, in contrast to bagging. Boosting typically
improves the performance of a single tree model. A reason for this is that we often cannot
construct trees which are sufficiently large due to thinning out of observations in the
terminal nodes. Boosting is then a device to come up with a more complex solution by
taking linear combination of trees. In presence of high-dimensional predictors, boosting is
also very useful as a regularization technique for additive or interaction modeling.


