| qr-methods {Matrix} | R Documentation |
Methods for QR Factorization
Description
Computes the pivoted QR factorization of an m \times n
real matrix A, which has the general form
P_{1} A P_{2} = Q R
or (equivalently)
A = P_{1}' Q R P_{2}'
where
P_{1} and P_{2} are permutation matrices,
Q = \prod_{j = 1}^{n} H_{j}
is an m \times m orthogonal matrix
equal to the product of n Householder matrices H_{j}, and
R is an m \times n upper trapezoidal matrix.
denseMatrix use the default method implemented
in base, namely qr.default. It is built on
LINPACK routine dqrdc and LAPACK routine dgeqp3, which
do not pivot rows, so that P_{1} is an identity matrix.
Methods for sparseMatrix are built on
CXSparse routines cs_sqr and cs_qr, which require
m \ge n.
Usage
qr(x, ...)
## S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
Arguments
x |
a finite matrix or
|
order |
an integer in |
... |
further arguments passed to or from methods. |
Details
If x is sparse and structurally rank deficient, having
structural rank r < n, then x is augmented with
(n-r) rows of (partly non-structural) zeros, such that
the augmented matrix has structural rank n.
This augmented matrix is factorized as described above:
P_1 A P_2 = P_1 \begin{bmatrix} A_{0} \\ 0 \end{bmatrix} P_2 = Q R
where A_0 denotes the original, user-supplied
(m-(n-r)) \times n matrix.
Value
An object representing the factorization, inheriting from
virtual S4 class QR or S3 class
qr. The specific class is qr
unless x inherits from virtual class
sparseMatrix, in which case it is
sparseQR.
References
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class sparseQR and its methods.
Class dgCMatrix.
Generic function qr from base,
whose default method qr.default “defines”
the S3 class qr of dense QR factorizations.
Generic functions expand1 and expand2,
for constructing matrix factors from the result.
Generic functions Cholesky, BunchKaufman,
Schur, and lu,
for computing other factorizations.
Examples
showMethods("qr", inherited = FALSE)
## Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,
b1 = rep(c(1, 0), each = 3L),
b2 = rep(c(0, 1), each = 3L),
c1 = rep(c(1, 0, 0), 2L),
c2 = rep(c(0, 1, 0), 2L),
c3 = rep(c(0, 0, 1), 2L)),
"CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps
## .... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_
(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
stopifnot(exprs = {
rankMatrix(A1) == ncol(A1)
{ d1 <- abs(diag(qr.A1@R)); sum(d1 < max(d1) * eps) == 0L }
rcond(crossprod(A1)) >= eps
all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)
})
## .... [2] numerically rank deficient with full structural rank .......
## ===> a least squares solution of A x = b does not
## exist or is not unique _in exact arithmetic_
(A2 <- M)
(qr.A2 <- qr(A2))
stopifnot(exprs = {
rankMatrix(A2) == ncol(A2) - 2L
{ d2 <- abs(diag(qr.A2@R)); sum(d2 < max(d2) * eps) == 2L }
rcond(crossprod(A2)) < eps
## 'qr.coef' computes unique least squares solution of "nearby" problem
## Z x = b for some full rank Z ~ A, currently without warning {FIXME} !
tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)
all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})
## .... [3] numerically and structurally rank deficient ................
## ===> factorization of _augmented_ matrix with
## full structural rank proceeds as in [2]
## NB: implementation details are subject to change; see (*) below
A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"
stopifnot(exprs = {
## sparseQR object preserves the unaugmented dimensions (*)
dim(qr.A3 ) == dim(A3)
dim(qr.A3@V) == dim(A3) + c(2L, 0L)
dim(qr.A3@R) == dim(A3) + c(2L, 0L)
## The augmented matrix remains numerically rank deficient
rankMatrix(A3) == ncol(A3) - 2L
{ d3 <- abs(diag(qr.A3@R)); sum(d3 < max(d3) * eps) == 2L }
rcond(crossprod(A3)) < eps
})
## Auxiliary functions accept and return a vector or matrix
## with dimensions corresponding to the unaugmented matrix (*),
## in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)
## .... [4] yet more examples ..........................................
## By disabling column pivoting, one gets the "vanilla" factorization
## A = Q~ R, where Q~ := P1' Q is orthogonal because P1 and Q are
(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
stopifnot(exprs = {
length(qr.A1 @q) == ncol(A1)
length(qr.A1.pp@q) == 0L # indicating no column pivoting
ae2(A1[, qr.A1@q + 1L], qr.Q(qr.A1 ) %*% qr.R(qr.A1 ))
ae2(A1 , qr.Q(qr.A1.pp) %*% qr.R(qr.A1.pp))
})