| dtCMatrix-class {Matrix} | R Documentation |
Triangular, (compressed) sparse column matrices
Description
The "dtCMatrix" class is a class of triangular, sparse
matrices in the compressed, column-oriented format. In this
implementation the non-zero elements in the columns are sorted into
increasing row order.
The "dtTMatrix" class is a class of triangular, sparse matrices
in triplet format.
Objects from the Class
Objects can be created by calls of the form new("dtCMatrix",
...) or calls of the form new("dtTMatrix", ...),
but more typically automatically via Matrix()
or coercions such as as(x, "triangularMatrix").
Slots
uplo:Object of class
"character". Must be either "U", for upper triangular, and "L", for lower triangular.diag:Object of class
"character". Must be either"U", for unit triangular (diagonal is all ones), or"N"; seetriangularMatrix.p:(only present in
"dtCMatrix":) anintegervector for providing pointers, one for each column, see the detailed description inCsparseMatrix.i:Object of class
"integer"of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.j:Object of class
"integer"of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix. (Only present in thedtTMatrixclass.)x:Object of class
"numeric"- the non-zero elements of the matrix.Dim,Dimnames:The dimension (a length-2
"integer") and corresponding names (orNULL), inherited from theMatrix, see there.
Extends
Class "dgCMatrix", directly.
Class "triangularMatrix", directly.
Class "dMatrix", "sparseMatrix", and more by class
"dgCMatrix" etc, see the examples.
Methods
- solve
signature(a = "dtCMatrix", b = "...."): sparse triangular solve (aka “backsolve” or “forwardsolve”), seesolve-methods.- t
signature(x = "dtCMatrix"): returns the transpose ofx- t
signature(x = "dtTMatrix"): returns the transpose ofx
See Also
Classes dgCMatrix, dgTMatrix,
dgeMatrix, and dtrMatrix.
Examples
showClass("dtCMatrix")
showClass("dtTMatrix")
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
t1
## from 0-diagonal to unit-diagonal {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,
all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))
t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)
## 2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),
x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5)) # contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions
I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)